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CHAPTER 1 
INTRODUCTION 

Computer models have been used extensively over the past two decades 

to model flows and pressures within a water distribution system.  More recently 

hydraulic models have been used to model water quality and water hammer, 

surge or transient events within water distribution systems.  In the American 

Water Works Research Foundation (AWWARF) Project No. 2686 Report 

“Verification and Control of Pressure Transients and Intrusion in Distribution 

Systems” conclusions were drawn regarding System number 2 (System #2) that 

the model results did not correlate well with field observations.  System #2 serves 

350,000 people in the southeast United States, has 65 MGD of pumping capacity 

at two treatment plants, over 1500 miles of main and 12 storage tanks.  This 

work further investigates the correlation between field and model results using 

the author’s extensive operational knowledge of System #2, access to real-time 

SCADA data, and access to boundary conditions, all of which were not 

considered adequately in the previous study. 

This work will discuss current regulations in regards to minimum pressure 

requirements and cross connection programs and will present some calculations 

as to what potential flow could revert back into the distribution system under low 

or negative pressure conditions.  This work will also provide tips to be used by 

engineers and water distribution system operators to locate areas within a 

distribution system that may potentially experience low or negative pressure and 

what precautions should be followed. 

The phenomenon known as water hammer, surge or transients is well 

documented and has been known to exist for over a 100 years.  The equation 

developed by Joukowsky in 1898 is widely used today even though its derivation 

was conducted so long ago.  In 1976, a Scottish research student named 

Alexander Anderson had a paper published in the Journal of the Hydraulics 

Division regarding an Italian engineer named L. F. Menabrea who published a 

short but concise paper in 1858 regarding water hammer and Jules Michaud who 
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is frequently attributed to the earliest water hammer analysis in 1878. (Anderson, 

1976) 

Many textbooks today still use the fundamental equations developed by 

Joukowsky and others.  E. Benjamin Wylie, widely considered to be an 

international expert on water hammer published an article in 1984 in the Journal 

of Hydraulic Engineering titled “Fundamental Equations of Water hammer” with 

discussions by leading hydraulic experts from around the world including Dr. 

Samuel Martin of Georgia Institute of Technology, whom taught the author of this 

paper’s undergraduate hydraulics class while he was at Georgia Tech in the late 

1980’s.  In Wylie’s paper the basic continuity equation was discussed, as well as 

how to handle the slope of the pipeline in solving the equations. (Wylie, 1984) 

As mentioned earlier, the phenomenon known as water hammer has been 

known for over 100 years.  The difficulty with water hammer, surge or transient 

analysis is how to solve the equations to give a complete account of the surge 

wave as it passes through a point. 

As an active practicing professional civil engineer, the author has routinely 

used the Joukowsky equation coupled with an instantaneous valve closure time 

to quickly calculate the maximum expected surge pressure or head that could be 

produced.  The author would also consider rapid pipe draining as the governing 

case for low pressure, which could lead to pipe wall buckling.  As luck would 

have it, on most of the systems designed by the author, the magnitude of the 

surge pressure produced was less than the strength of the pipe and the 

prevention of pipe buckling due to rapid drainage could be easily handled with air 

/ vacuum valves.  This meant that nothing else “needed to be done” and the 

effects of high and low pressures as a result of a velocity change were fairly 

easily handled. 

This is not to say that there were not times where surge problems needed 

devices in addition to pipe strength and air / vacuum valves because there were.  

The author has been involved in several pipeline designs where hydro-pneumatic 

surge vessels were used to eliminate secondary surge waves produced by water 

column separation and the resulting collapsing of these air pockets.  The point to 
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this discussion is to say that low and high pressure waves that occur within a 

water distribution system can be handled rather easily but there are other 

aspects of low pressure surge waves such as pathogen intrusion that warrant 

further study. 

The main purpose of the AWWARF Project No. 2686 was to test the 

assumption that low pressure transients can result in contamination to the water 

distribution system when pressures of the water surrounding the water main are 

greater than the internal pressure (LeChevallier, et al, 2002).  The water 

surrounding the water main may be there due to either a water main leak, 

surcharged sanitary sewer, or high ground water levels.  AWWARF Project 2686 

was commissioned to investigate several items, one was the use of high speed 

data recorders to try and capture the low and / or negative pressure surge 

waves, the second was the use of conventional pressures recorders and the third 

item was to investigate the applicability of computer surge models such as 

Surge2000 to predict surge waves. 

AWWARF Project 2686 was a success in that it demonstrated that low 

and / or negative surge waves do exist and can be captured with high speed data 

recorders and in some cases traditional pen and chart recorders.  AWWARF 

Project 2686 was not successful in correlating the field data with computer surge 

models.  This work improves upon the modeling results.  The benefit of having a 

computer model that can predict with some level of accuracy the location and 

duration of low and / or negative pressures is that it gives water distribution 

system operators and engineers a powerful analysis tool that can be used to 

implement cost effective solutions. 

 

1.1 State of Hydraulic Modeling 
Hydraulic modeling of water distribution systems is common.  Many water 

utilities use hydraulic models routinely to assist in the design of system 

expansions and improvements such as new mains to serve new developments 

and new mains to replace aging infrastructure.  Because hydraulic models rely 

heavily on field data to be able to simulate actual field conditions they lend 
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themselves well to being used as a tool to locate areas of high friction loss (i.e. 

low Hazen Williams C-values).  Hydraulic models are also used during 

comprehensive planning studies to assist in the preliminary design of a water 

system.  Because hydraulic models can run on personal computers (PC) they 

have become easier to use and give design engineers the ability to run many 

alternatives quickly. 

There are currently several firms, companies or institutions that have 

created and/or are marketing hydraulic modeling software.  The most common in 

use today within the United States are Pipe2000 by the Civil Engineering 

Software Center at the University of Kentucky, WaterCAD by Haestad Methods, 

Inc., H20Net by MWH Soft and EPANET by the Environmental Protection 

Agency.  Other software products were also developed by Stoner and Pitometer 

Associates and have also been used to model water distribution systems.  Each 

of these products has evolved into user-friendly platforms that can run as stand 

alone platforms or within other programs such as AutoCAD (a widely used 

drawing software by AutoDesk).  Each of the products is also similar in that they 

compute flows in pipes and pressures at nodes (junctions) by solving looped 

headloss equations simultaneously.  The programs differ in the methodology 

used to solve these equations.  H20Net and WaterCAD use an EPANET engine 

to solve for the flows and pressures.  EPANET solves for the pressures at the 

nodes first and then computes the flows in the pipes to achieve the previously 

computed pressures.  In contrast, Pipe2000 computes the flows in the pipe first 

then computes the resulting pressures at each node. 

This work will not focus on which methodology is best or more stable 

under different conditions.  The above items are mentioned as information only 

and do not affect this work other than to say, for the hydraulic modeling 

performed for this paper, the Pipe2000 product which solves for the pipe flow first 

and then the pressures at the nodes was used.  It is unknown and beyond the 

scope of this work to determine if the hydraulic modeling results would be 

different if another software product was utilized. 
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1.2 State of Surge Modeling 
Like hydraulic modeling software, surge-modeling software has also 

increased in usage since the increased use of PCs in the workplace.  It was not 

that long ago that most surge modeling software was solely created and used by 

the academic community on a project-by-project basis.  A colleague once noted 

that “for surge models, it took PhD’s to understand how to input the data and how 

to understand the output.”  The main reason for this was due to the complex 

nature of solving the equations.  Most of these models used the “method of 

characteristic” (MOC) approach to solving complex equations. 

In 1966, Dr. Don C. Wood, et al, first introduced the concept that became 

known as the “wave plan method” (WPM) analysis approach to solving unsteady 

flow in closed conduits.  Over the years, this work evolved into the creation of the 

SurgeX.X (X.X referring to version) software created and marketed by the Civil 

Engineering Software Center at the University of Kentucky.  More recently, the 

developers of WaterCAD and H20Net have also started marketing surge 

modeling software.  Haestad Methods markets a surge modeling product called 

HAMMER that is based on a MOC engine developed by the Environmental 

Hydraulics Group.  MWSoft markets a surge modeling product called H20Surge / 

InfoSurge that is based upon a “wave characteristic method” (WCM).  WCM is a 

hybrid between the WPM and MOC and based on information on the MWSoft 

website (www.mwsoft.com) is the “fastest, most efficient, most rigorous and 

stable algorithm for solving hydraulic transients.” 

This work will not focus on which methodology is fastest, best or more 

stable under different conditions.  The above items are mentioned as information 

only and do not affect this work other than to say that the surge modeling 

performed for this paper uses the Surge2000 product, which uses WPM.  It is 

unknown and beyond the scope of this work to determine if the surge modeling 

results would be different if another software product or solving methodology was 

utilized. 
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CHAPTER 2 
LITERATURE REVIEW 

2.1 Introduction to Literature Review 
As previously discussed, surge, transients or water hammer has been well 

documented over the last 100 years.  As part of the literature review, databases 

for the American Society of Civil Engineers, which includes the Journal of 

Hydraulics (both Division and Engineering) as well as its predecessor the Journal 

of Transportation Engineer and the American Water Works Association were 

searched for articles on water hammer, surge or transients.  Many papers were 

found, such as paper by George Belonogoff titled “Computer Simulation of 

Waterhammer Effects” and a paper by Duncan McInnis and Bryan W Karney 

titled “Transient in Distribution Networks: Field Tests and Demand Models” but 

none of the papers dealt with predicting the locations and magnitudes of low 

pressure transients using computer models in large water distribution systems. 

The Belonogoff paper, which was published in 1972 used a Fortran based 

MOC solver to compute transients at a large nuclear power plant.  Several 

papers will be discussed and compared to this work.  The first is a paper based 

on low-pressure problems in a large water distribution system in Austin, Texas.  

The second paper is based on field monitoring and surge modeling in a large 

water distribution system in Davenport, Iowa.  The third paper, the previously 

mentioned McInnis paper, discusses surge modeling work and computer 

modeling done in a large distribution system.  The fourth paper will briefly discuss 

the effect of skeletonization on transient model results.  A discussion of papers 

regarding the link between health effects and transients will be discussed. 

 
2.2 Transient Induced Low Pressures in Austin, Texas 

The December 1994 issue of the American Water Works Association 

Journal features a paper by Thomas M. Walski and Tersa L. Lutes titled 

“Hydraulic Transients Cause Low-Pressure Problems” and is about “mysterious 

short-term pressure drops at the top of Cat Mountain.”  Cat Mountain is located in 

an area of high elevation and is a part of the Austin, Texas water distribution 
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system.  The Cat Mountain area is located in Northwest A pressure zone that has 

an average daily demand of 12.5 MGD with an additional flow of 5.8 MGD 

passing through the zone to another service territory. 

As a comparison, the City of Austin’s water distribution system serves 

approximately one half million people at elevations of between 750 and 1050 

feet.  This makes the Austin system slightly larger than System #2 of this work, 

which serves approximately 350,000 people.  The elevation of the Austin system 

is about the same as the elevation of System #2 in that System #2 varies 

between 850 and 1180.  Even though the Austin water system is larger than 

System #2, the Northwest A pressure zone is smaller than System #2 since 

System #2 has average flows of 42 MGD.  The pumps used to pump into the 

Northwest A pressure zone varied in size, but generally an 8000-gpm pump was 

utilized.  This is approximately the same size pump used during the drawdown 

tests at WTP1 in System #2. 

The Austin paper discusses the analysis undertaken to determine the 

culprit for the low-pressure problems.  Items discussed include large demands, 

faulty air / vacuum valves, faulty pressure reducing valves, poor carrying 

capacity, water theft and operating procedures.  Similar to the fieldwork 

performed for this work, resulting surge pressures below 20 psi were recorded in 

Northwest A pressure zone.  No negative values were recorded.  The lowest 

recorded pressure value was 9 psi.  The Austin paper does not discuss what 

analysis tools were utilized during the study other than to mention that a celerity 

or wave speed of 3000 fps was utilized.  This value is consistent with values 

used in this work.  In summary, the paper concluded that the isolation of storage 

tanks coupled with routine pump shutdowns was the culprit for the observed 

transient induced low pressures.  The Austin paper recommended that storage 

tanks not be isolated from the distribution system during pump shutdowns, 

because the tanks help to dampen the surge wave.  Their field data showed and 

confirmed this assumption and their assumption is consistent with textbook 

discussions regarding the difference between a tank and a dead end main. 
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Unlike the Austin system that changed its operation to keep storage tanks 

online, the System #2 distribution system does not have the ability to keep tanks 

online.  This is due to the fact that most of the tanks in System #2 are pump-

storage tanks and that only a couple of tanks located far away from the treatment 

plants are online floating tanks which could help dampen surges.  One would 

expect, based on the Austin paper that surge waves in System #2 would have a 

greater effect due to the limited amount of storage tanks.  Based on this work, 

that assumption appears to be correct. 

 

2.3 Low Pressure Monitoring and Modeling in Davenport, Iowa 
Richard W. Gullick, Mark W. LeChevallier, James Case, Don J. Wood, 

James E. Funk and Melinda J. Friedman authored a paper in March 2004, tilted 

“Application of Pressure Monitoring and Modeling to Detect Low Pressure Events 

in Distribution Systems”.  This paper was submitted to AQUA for publication and 

like the AWWARF Project 2686 was a project funded by EPA and AWWARF to 

determine if contaminants could enter a water distribution system due to low 

pressure transients.  This paper presented the results of over 1.4 years of data 

logging within the water distribution system of Davenport, Iowa to determine if 

low and / or negative pressures occurred.  Over the 1.4 years nine occasions of 

pressures below 20 psi were observed and no pressures below 0 psi were 

recorded.  This in contrast to this work where eleven occurrences of pressures 

below 0 psi were recorded within System #2. 

Although the Davenport study is similar to this work there are several 

differences that separate the two works and allow this work to further the study 

into predicting low and / or negative pressures within large water distribution 

systems.  The differences are:   

• The Davenport system and model are considerably smaller than 

that of System #2.  The Davenport water system serves 45,800 

customers vs. over 105,000 customers for System #2. 

• The Davenport system consists of approximately 541 miles of main 

versus over 1500 miles of main for System #2. 
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• The Davenport surge model consisted of 1703 pipes, 1146 nodes, 

12 supplies, 30 pumps and mains between 6 and 24-inches vs. 

2516 pipes, 1758 nodes, 2 WTP, 12 tanks and mains between 2 

and 36-inches for the System #2 model. 

• The Davenport paper only modeled surge waves using surge wave 

speeds of 3000 fps vs. this work that utilized six different values of 

wave speed for each modeling scenario. 

• As part of the Davenport fieldwork, no treatment plant power 

outages occurred which would have caused a greater low pressure 

event.  The surge modeling work was thus focused around 

determining what impact would be expected to occur if power was 

lost at the WTP.  This in comparison to this work where a lightning 

strike took out all the running high service pumps at WTP 1 

(scenario #3). 

• The total amount of time in which all nodes were less than 0 psi 

was determined based on surge model runs for expected power 

failure scenarios.  These values were not tested against field data 

since no actual pressures below 0 psi were recorded.  This is in 

contrast to this work where actual values below 0 psi were recorded 

in the field and compared to this work. 

 

Despite the difference between the Davenport paper and this work, there 

are several similar items that should be mentioned and discussed to indicate how 

surge models can be used as tools to the engineering and water distribution 

operations groups. 

• Both Davenport and this work use the pressure contour generation 

tool within Surge2000 to show the locations of low and / or negative 

pressures. 

• Both Davenport and this work used and had good results with a 

3000 fps wave speed. 

9 
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• Both Davenport and this work confirmed that routine pump 

shutdown operations could cause pressures below 20 psi to occur. 

 

The work under taken by the AWWARF Project 2686 was the next step 

based upon the Davenport work.  The drawback to the AWWARF project 2686 

was that the team was unable to get the surge models to correlate well with the 

filed data.  This work, as mentioned previously was done to improve upon the 

work started by the Project 2686 team and thus ultimately build on the work 

started in Davenport. 

 

2.4 Transient Field Test and Demand Models in Calgary, Canada 

In 1995, Duncan McInnis and Bryan W. Karney published a paper in the 

Journal of Hydraulics titled “Transient in Distribution Networks: Field Tests and 

Demand Models”.  This paper was based on surge modeling work within the City 

of Calgary’s water distribution system (Calgary, Canada).  The reason for the 

paper was to explore “the relatively unexplored area of transients in complex pipe 

networks.”  The paper explains that one of the reasons for lack of work in the 

area of transient studies in complex distribution systems was because it was 

widely believed that complex distribution systems, by their very nature, 

contributed to the rapid dampening of surge events.  The paper explains that 

there is little rational for that thought and that they had found it to be contrary to 

some of their previous work. 

One item that the Calgary paper addressed was the allocation of demands 

within the complex distribution system.  The Calgary paper explored three 

methods of handling these demands.  The three methods were discrete demands 

at nodes, orifice based demands and at nodes and distributed demands along 

the pipes.  As a comparison, for the surge model done as part of this work, orifice 

demands at nodes are utilized. 

The Calgary distribution system was modeled using a proprietary software 

called TRANSAM, which utilizes a MOC engine to solve for pressures at nodes 

and was compared to field data obtained form actual pump shutdown operations.  
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In review of the results, the field data and the surge model data correlated 

extremely well at several monitoring sites.  The surge model created for this 

work; however, was not extremely complex.  The model contained 132 pipes and 

123 nodes, three pump stations and one reservoir with overall length of pipe of 

around 90 kilometers or 55 miles and had an average demand of 2.1 MGD.  The 

waves speed utilized varied between 1150 meter / second and 1200 meter / 

second or 3772 fps and 3937 fps.  As previously indicated the size of the Calgary 

model is approximately 10 smaller in terms of length monitored and 20 times 

smaller in terms of average demand than the model created for System #2. 

The purpose of the Calgary work was not to determine and locate low and 

/or negative transient, but to show that complex water distribution systems need 

to be studied further because transients due exist.  As part of the conclusion, the 

author’s state that their work is only the beginning in trying to understand 

transient behavior in complex water distribution systems. and that additional field 

testing and modeling will be needed.  This work is a logical next step in that it 

seeks to correlate surge model results with real life field data. 

 

2.5 Effects of Skeletonization on Surge Models 

Thomas W. Walski, Jean-Luc Daviau and Samuel Coran wrote a paper 

titled “Effect of Skeletonization on Transient Analysis Results”.  No date was 

indicated on the paper except a reference to the year 2003 was found within text 

body so the paper is no older than 2003.  The purpose of the paper was to create 

surge models that represented a real water system, then run different 

skeletonizing routines to reduce the number of pipes within the model, re-run the 

surge analysis and determine the effects on the final results.   

The model created for this skeletonizing work contained 261 pipes 

covering 18 miles of length with pipe sizes between 4 and 12-inches.  The model 

contained one 950-gpm pump, one tank and the mentioned mains.  Surge 

models were run with models containing 261, 143, 107, 16 and 3 pipes.  The 

results indicate that each skeletonization tends to make the surge magnitudes 

greater and that the 16 and 3 pipe models, are significantly different than the 

11 



www.manaraa.com

original model.  In the Summary the author’s indicate that “overall transient head 

envelope does not drastically change until the number of pipes is reduced to less 

than 10 percent of the original system.”  For this work, the skeletonized surge 

model created for System #2 contains over 40 percent of the water distribution 

system, thus based on the Walski skeletonizing work it is assumed that little to no 

effect on the results will be due to skeletonizing. 

 

2.6 Link Between Health Risks and Transients 
In order to show the possibility of low and/or negative pressures within a 

water distribution system and how they can cause potential health effects, 

researchers have broken the problem into two areas:  occurrences and effects of 

occurrence.  In the paper titled “Occurrence of Transient Low and Negative 

Pressures in Potable Water Distribution Systems” (Gullick, et. al, 2004) multiple 

low and negative pressures are documented to exist within potable water 

distribution systems.  The paper documents fifteen cases in which negative (i.e. 

below 0 psi) pressures were observed.  Of these fifteen cases, the author of this 

work was personally involved in the site selection and recording of thirteen 

cases.  Eleven of the thirteen cases were the result of pump shutdown 

operations and two cases were the starting and stopping of water cannons used 

in the cleaning of US military tanks.  Of the eleven pump shutdown cases, ten 

were considered normal shutdowns, meaning that the operators at the treatment 

plant physically hit the “stop” button on the pump’s motor control center starter.  

The single pump shutdown that was not intentional was caused by a lighting 

strike that caused several pumps to trip and shutdown at once. 

In the paper titled “The Potential for Health Risks from Intrusion of 

Contaminants into the Distribution System from Pressure Transients 

(LeChevallier, et al, 2002) studies were done to determine if soil / water samples 

from areas around a water main could contain any type of contaminant that could 

be harmful to customers.  The contaminants studied and identified were both 

chemical and biological in nature.  Chemical contaminants, given enough 
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accumulation can lead to acute toxicity while biological contaminants such as 

virus can cause infection with a single organism. 

Given that occurrences of low and or negative pressure do exist and that 

soil sampling from soil surrounding water mains has indicated the presence of 

containments known to be harmful to humans, the link between transients and 

potential health effects is possible. 

 

2.7 Conclusion to Literature Review 
The papers cited and reviewed as part of this work indicate that low 

pressures and even negative pressures occur with some regularity in water 

distribution systems and that even something as common as a pump change 

operation can cause an occurrence.  The citied papers also indicate that 

computer models do a good job of predicting transients within small water 

distribution models.  Similarly it is well documented that soils and water samples 

taken from around water mains contain many harmful contaminants that could 

lead to adverse health effects for users of the water distribution system. 

Due to the potential risk to human life, it is clear that the use of computer 

models that can predict areas affected by low and/or negative pressures will 

become an important tool to predict, mitigate and potentially prevent low and/or 

negative pressure occurrences. 

Surge2000, surge-modeling software developed at the University of 

Kentucky is one such tool.  This work will demonstrate how good a tool 

Surge2000 is in predicting low and/or negative pressures within a large complex 

water distribution system. 

13 
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CHAPTER 3 
RESEARCH OBJECTIVE AND APPROACH 

3.1 Hypothesis 
Current on the market computer transient models, such as Surge2000 

developed by the Civil Engineering Software Center at the University of 

Kentucky, can be used to predict the magnitude, length (time) and locations of 

low and/or negative transients within large potable water distribution systems. 

 

3.2 Objective 
The research objective was to improve upon the surge modeling results of 

a previous study conducted through the American Water Works Research 

Foundation (AWWARF) Project No. 2686, which was conducted by Economic 

and Engineering Services, Inc., Tulane University, American Water Works 

Service Company and the University of Kentucky.  Using the author’s extensive 

knowledge of System #2 and access to boundary conditions, the objective was to 

truly determine if the surge model would correlate with the field data collected by 

the author for the AWWARF Project 2686.  System #2 is a large complex water 

distribution system serving 350,000 people in the southeast United States.  The 

system has 65 MGD of pumping capacity at two treatment plants, over 1500 

miles of main and 12 storage tanks. 

 

3.3 Research Approach 
The approach for this study involves several distinct steps.  Step one 

involves compiling the results from the AWWARF study and presenting them in 

tabular form for Modeling Scenarios 1 & 2 and for the Calibration Data (Scenario 

#4).  Step two involves creating 24 hour extended period simulation hydraulic 

model runs using Pipe2000 for each of the three scenarios presented in the 

AWWRF study.  The reason for performing the EPS runs is to confirm that the 

demands are correct in the model for the day and time modeled.  The third step 

will be to produce four surge models, one for scenario 1, one for scenario 2, one 

for a lightning strike that occurred at WTP1 (Scenario #3), and a fourth and final 
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model for the calibration model used in the AWWARF study (Scenario #4).  

These four surge models will be run to simulate the same events that occurred in 

real life and that were discussed in the AWWARF study. 

The AWWARF study concluded “On average, steady state pressures 

calculated in the model were 20% lower than steady state pressures observed in 

the field.  This was not consistent with the model calibration, for which steady-

state pressures predicted by the model were often significantly larger than 

observed in the field.”(Friedman, 2004)  By incorporating, more accurately the 

demand changes and system boundary conditions the models created for this 

study will have a better correlation with steady state conditions.  This will allow 

for a true comparison of predicted transients pressure with field obtained values. 

Presented on the following pages in Tables 3.1, 3.2 and 3.3 are the 

tabular results of the AWWARF Project 2686.  Scenario #1 relates to the pump 

stopping operations performed at the WTP during pump drawdown tests.  

Scenario #2 relates to pump shutdown tests performed for the AWWARF study 

at one of the utilities pump storage facilities.  Table 3.3 is the results of the 

calibration data based on drawdown tests at the WTP and was the data used to 

calibrate AWWARF’s surge model. 
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Table 3.1 – AWWARF Project 2686 Results of Scenario #1 
Modeling scenario #1, field and model pressure results* 

Pump # Site #1 Site #3 Site #5 
(Time of Pressure Range Pressure Pressure Range Pressure Pressure Range Pressure 
Closure) Max  Min Drop Max  Min Drop Max  Min Drop 

  (psi) (psi) (psi) (psi) (psi)     (psi) (psi) (psi) (psi)
Pump 14 (55 sec)               
Field 159      87 72 69 19 50 40 33 7
Model (AWWARF Study) 148 86 62 51 12 39 30 23 7 
                
Pump 10 (41 sec)               
Field 158      95 63 67 27 40 39 32 7
Model (AWWARF Study) 146 106 40 50 24 26 29 24 5 
                
Pump 11 (25 sec)               
Field 158         113 45 67 39 28 40 32 8
Model (AWWARF Study) 144 52 92 49 -13 62 29 16 13 
* Maximum pressures are equal to the initial steady state pressures for all sites. 
Items in bold are field value   
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Table 3.2 – AWWARF Project 2686 Results of Scenario #2 
Modeling scenario #2, field and model pressure results* 

Pump # Site #6 Site #5 Site #3 
(Time of Pressure Range Pressure Pressure Range Pressure Pressure Range Pressure 
Closure)       Max Min Drop Max Min Drop Max Min Drop

  (psi) (psi) (psi)    (psi) (psi) (psi)
Pump 1(1) (22 sec)             
Field    98 37 61 45 33 12 74 68 6
Model (AWWARF Study) 82 41 41 35 19 16 58 50 8 
              
Pump 1(1) (24 sec)             
Field    99 38 61 45 34 11 73 67 6
Model (AWWARF Study) 83 42 41 35 20 15 58 50 8 
              
Pump 1(1) (30 sec)             
Field     100 40 60 47 35 12 77 70 7
Model (AWWARF Study) 83 44 39 36 21 15 59 51 8 
              
Pump 1(1) (52 sec)             
Field    99 44 55 48 37 11 77 71 6
Model (AWWARF Study) 84 50 34 36 23 13 59 53 6 
* Maximum pressures are equal to the initial steady state pressures for all sites. 
Items in bold are field values    
(1) 300 Hp Pump          
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Table 3.3 – AWWARF Project 2686 Calibration Data 
      Field Measurements Model Value 
  Flow 
  (Pre-condition) 

Start Time (MGD) 
  

Cause of Transient 
(Operating 
Condition) 

Field Model 

S
ite

# Pre-
Condition 
Pressure 

(psi) 

Maximum 
Change in 
Pressure  

(psi) 

Pre-
Condition 
Pressure 

(psi) 

Maximum 
Change in 
Pressure 

(psi) 
27.8       26.6 1 140 61 150 44

        2 63 52 72 427:51:34 AM Shutdown of HS 
Pump 10 

    3 51 41 59 36 
19.3       19.6 1 132 78 135 79

        2 59 64 61 63
 

8:08:50 AM Shutdown of HS 
Pump 14 

    3 48 51 50 52 
8.5       9.5 1 121 80 118 75

        2 51 60 48 619:04:52 AM Shutdown of HS 
Pump 11 

    3 42 49 39 51 
0       0 1 121 63 109 54
        2 52 57 40 4711:08:32AM Startup of HS 

Pump 11 
    3 45 42 32 37 

7.6       5.5 1 135 113 119 98
        2 62 71 48 6212:09:57 PM Shutdown of HS 

Pump 11 
    3 53 58 40 54 

8.5       9.4 1 119 39 108 57
        2 50 38 39 5412:47:44 PM Startup of HS 

Pump 11 
    3 43 27 31 43 

18.9       19.6 1 125 39 119 55
        2 55 38 48 5112:56:37 PM Startup of HS 

Pump 14 
    3 47 26 40 39 
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Looking at Tables 3.1, 3.2 and 3.3 it is clear that the modeling results were 

somewhat non-successful in the fact that the calibration data correlated rather 

well but then scenarios #1 and #2 found in tables 3.1 and 3.2 did not correlate 

well at all.  As an example, in Table 3.3, under the shutdown of pump 14 at 8:08 

AM and pump 11 at 9:04 AM, the field measurements for both flow, pre-condition 

pressure and maximum pressure change are within 0.3 MGD and 3 psi or in 

terms of percentage about 2% for each.  Two percent for all intensive purposes is 

considered to be excellent correlation for hydraulic modeling work.  However, in 

Table 3.1, the surge models both over predicted and under predicted the 

pressures at sites 1, 3 & 5.  In Table 3.2, the surge models under predicted at 

site 6 and over predicted at sites 3 and 5.  In Table 3.3, the surge models both 

over and under predicted transient values as shown below: 

• 7:51, under predicted, 

• 9:04, both under and over predicted, 

• 12:09, under predicted, 

• 12:47, over predicted, 

• 12:56, over predicted. 
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CHAPTER 4 
METHODS 

4.1 Field Work 
The field work portion of this study involved three distinct activities.  

Activity one was conducted in the office and involved the review of water 

distribution maps, USGS Quad sheets, discussions with distribution system 

operators and pertinent operation data from the water utility.  Activity two 

involved the setup and practice with the high-speed data recorders.  Activity 

three involved the actual collecting of data during the transient scenarios. 

 

4.1.1 Field Work Activity I 
The purpose behind activity one was to determine the best location for 

monitoring for transient events to insure that time was not lost in tracking down 

locations.  This task was accomplished in a couple of ways.  First, a review of 

distribution maps was conducted to determine suitable locations.  The areas 

targeted were locations downstream from any pumps (water treatment plants and 

booster pump stations), localized high points, areas in which low pressures 

complaints are commonly received and areas near large water users.  This task 

yielded approximately 25 sites for consideration.  Presented in Table 4.1 is a list 

of these 25 sites. 

After the development of a list for potential sites the next step taken was to 

determine the potential for a surge event to occur at each of the sites.  The main 

item looked at in this step was the magnitude of the change in velocity.  The 

higher velocity the better the chance there would be to capture a transient event.  

Localized high points along long transmission mains were also investigated due 

to the potential for low and/or negative pressures to be present.  Presented in 

Table 4.2 is a computation of the expected maximum velocity change at each 

site. 
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Table 4.1 – Initial Surge Site Locations 

 
 

Site # 
 

Location 
1 Downstream High Service Pumps at 40 MGD Water Treatment Plant 

(WTP#1: 3-10 MGD & 3-8 MGD pumps) 
2 Localized high point on north 30-inch transmission main downstream 

of Site #1 
3 Localized high point on north 30-inch transmission main downstream 

of Site#2 
4 Pump Storage Facility (YST: 1 MG tank & 2.5 MGD pump) that fills 

at high rate off 12-inch & 6-inch mains. 
5 Highest point in distribution system.  Location of existing SCADA 

monitored pressure vault. (STR)  Routinely fields low pressure 
complaints from customer in area. 

6 Pump Storage Facility (HRT: 3 MG tank, 2-3 MGD & 1-6MGD 
pumps) 

7 Localized high point on south 30-inch transmission main downstream 
of Site#8 

8 Localized high point on south 30-inch transmission main downstream 
of Site #1 

9 Downstream High Service Pumps at 25 MGD Water Treatment Plant 
(WTP#2: 6 pumps from 4 to 12 MGD) 

10 Localized high point on 8-inch in Eastern portion of system.  Location 
of existing SCADA monitored pressure vault. (CHIL) 

11 Localized high point on 8-inch in Eastern portion of system.  Location 
of existing SCADA monitored pressure vault. (MAR) 

12 Localized high point on 12-inch distribution main in SE portion of 
system. 

13 Pump Storage Facility (CLY: 3 MG tank, 2-9 MGD pumps) 
14 Pump Storage Facility (CX: 2-1 MG tanks, 1-2.5 MGD, 1-3 MGD 

pumps) 
15 Pump Storage Facility (MER: 1 MG tank, 5 MGD pumps) 
16 Pump Storage Facility (PM: 3 MG tank, 9 MGD pump) 
17 Pump Storage Facility (HL: 0.2 MG tank, 2-0.5 MGD pumps) 
18 Booster Pump Station (BH: 2-1.5 MGD pumps) 
19 Booster Pump Station (NWT: 2-3 MGD & 1-2 pumps) 
20 Booster Pump Station (LE: 2-0.4 MGD pumps) 
21 Booster Pump Station (MTH: 2-0.4 MGD pumps) 
22 Booster Pump Station (DEL: 0.9 MGD pump) 
23 High demand customer (TOY) draws 5 MGD rate. 
24 High demand customer (VER) draws 2 MGD rate. 
25 High demand customer (UKY) draws 1.5 MGD rate. 
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Table 4.2 – Velocity Change per Surge Site 
 

Site # 
 

Max 
Flow 

(MGD) 

Max 
Flow 
(cfs) 

No. & size of pipes 
 

Total 
Pipe 
Area 
(sf) 

Max. 
Velocity
Change 

(ft/s) 
1 40.0 61.9 2 - 30” main 9.8 6.3 
2 20.0 30.9 1 - 30” main 4.9 6.3 
3 20.0 30.9 1 - 30” main 4.9 6.3 
4 2.5 3.9 1 - 12”, 1 - 6” mains 1.0 3.9 
5 Localized high point 
6 9.0 13.9 1 - 30” main 4.9 2.8 
7 20.0 30.9 1 - 30” main 4.9 6.3 
8 20.0 30.9 1 - 30” main 4.9 6.3 
9 25.0 38.7 2-24”, 3-16”, 1 - 20” 12.7 3.1 
10 Localized high point 
11 Localized high point 
12 Localized high point 
13 13.0 20.1 1 - 36” main 7.1 2.8 
14 5.5 8.5 1 - 20” main 2.2 3.9 
15 5.0 7.7 1 - 20” main 2.2 3.5 
16 9.0 13.9 1 - 24” main 3.1 4.4 
17 1.5 2.3 1 - 12” main 0.8 3.0 
18 1.9 2.9 1 - 12” main 0.8 3.7 
19 6.0 9.3 1 - 24” main 3.1 3.0 
20 0.4 0.6 1 - 8” main 0.3 1.8 
21 0.4 0.6 1 - 8” main 0.3 1.8 
22 0.9 1.4 1 - 12” main 0.8 1.8 
23 5.0 7.7 1 - 16” main 1.4 5.5 
24 2.0 3.1 1 - 16” main 1.4 2.2 
25 1.5 2.3 1 - 12” main 0.8 3.0 

 

Table 4.2 can be narrowed down further based on a more in depth 

analysis of what may occur at each site.  Based on a site-by-site analysis, the 

following text lists why sites were selected or not selected for potential transient 

location. 

• Site 1:  Selected because pumps are routinely started and stopped and 

power outages occasionally occur.  Also the location for the transient 

model calibration and Scenario #1 in the AWWARF Study. 
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• Site 2:  Selected because conditions at Site 1 may have impact at this site.  

This site is the first localized high point along the northern 30-inch 

transmission main that leaves the WTP at Site 1. 

• Site 3:  Selected because conditions at Site 1 may have impact at this site.  

This site is the second localized high point along the northern 30-inch 

transmission main that leaves the WTP at Site 1. 

• Site 4:  Selected because of potential impact that site may have on Site 5. 

• Site 5:  Selected because it is the highest point within the distribution 

system and the area where many low pressure complaints occur.  This 

site is also monitored through SCADA and allows for verification of 

hydraulic (non transient) model performance. 

• Site 6:  Selected site because of potential impact that site may have on 

Site 5.  Also the location for Scenario #2 in the AWWARF Study. 

• Site 7:  Selected because conditions at Site 1 may have impact at this site.  

This site is the first localized high point along the southern 30-inch 

transmission main that leaves the WTP at Site 1. 

• Site 8:  Selected because conditions at Site 1 may have impact at this site.  

This site is the second localized high point along the southern 30-inch 

transmission main that leaves the WTP at Site 1. 

• Site 9:  Not selected because velocity changes are rather low.  Less than 

3.1 feet per second (fps) at 25 MGD rate.  Plant routinely runs at 12 MGD 

approximately 80% of time, thus velocity will usually be less that 1.5 fps. 

• Site 10, 11 & 12:  Not selected due to review of SCADA data that shows 

that these areas do not routinely witness transient events.  Flows in these 

mains are generally low except in the case of a fire and without knowledge 

of when and where fire would occur it was decided not to use these three 

sites. 

• Site 13:  Not selected because the control valves used at this site have 

travel times greater than 2 minutes.  Potential exists at this site, may be 

used for future studies. 
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• Site 14:  Not selected because potential velocity change is not high.  

Normally velocity change will be around 1.5 fps.  2.8 fps value is when 

both pump storage facilities are operating at same time, which occurs only 

on maximum demand days. 

• Site 15:  Not selected, but potential exists at this site, may be used for 

future studies. 

• Site 16:  Not selected, but potential exists at this site, may be used for 

future studies. 

• Site 17:  Not selected because potential velocity change is not high.  

Normally velocity change will be around 1.5 fps.  3.0 fps value is when 

both pumps are operating at same time, which occurs only on maximum 

demand days. 

• Site 18:  Not selected because the control valves used at this site have 

travel times greater than 2 minutes and the pump motors are slowed at 

starting and stopping by variable frequency drives (VFD).  Potential exists 

at this site if power outage occurs. 

• Site 19:  Not selected because potential velocity change is not high and 

because the control valves used at this site have travel times greater than 

1 minute.  Normally velocity change will be around 1.5 fps.  3.0 fps value 

is when two of the three pumps are operating at same time.  This only 

occurs only on maximum demand days.  Generator may be able to react 

fast enough during loss of power event to keep pumps running. 

• Site 20:  Not selected because this station is used less than 5% of the 

time. 

• Site 21:  Not selected because this station is used less than 5% of the 

time. 

• Site 22:  Not selected for this work, but pressure monitoring at this site 

with high-speed data loggers indicated transients occur at this location.  

The transients observed are high-pressure transients not low or negative 

pressure transients. 
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• Site 23:  Not selected for this work but pressure monitoring at this site with 

high speed data loggers indicated transients occur at this location.  The 

transients observed are high-pressure transients not low or negative 

pressure transients. 

• Site 24:  Not selected because demand use is sporadic. 

• Site 25:  Not selected because this large user is located within heart of 

distribution system with many looped feeds. 

 

4.1.2 Field Work Activity II 
The purpose behind activity two was to learn how to use the high-speed 

pressure recorders prior to their actual use in the field.  The AWWARF Project 

2686 team established protocols for data collection with input from this author.  In 

the AWWARF Project 2686 Draft Final Report “Field Testing of Surge Model 

Prediction to Verify Occurrence of Distribution System Intrusion” (Economic and 

Engineering Services, et. al. 2002) and in the final report titled “Verification and 

Control of Pressure Transients and Intrusion in Distribution Systems”(Friedman, 

et. al. 2004) an entire section is devoted to the methodology used with the high-

speed data recorders, data collection and transmission and need not be entirely 

repeated. 

The high-speed pressure recorders were single-channel pressure 

transient data logger (Model RDL 1071L/3 Pressure Transient Logger; Radcom 

Technologies, Inc. Woburn, MA).  In addition to the data loggers, software 

developed by Radcom was utilized to download and view data from the data 

loggers.  The software utilized was Radlog for Windows V3.21. 

The first test and setup of the data logger equipment occurred at the 

author’s home.  The author installed the data logger on a house hose bids and 

had his son quickly open and close a bathroom faucet.  The author then 

downloaded the data and viewed it with the Radlog software.  Figure 4.1 is an 

image of the downloaded data. 

Once he was satisfied that he knew how the equipment worked, he 

proceeded to perform a bench calibration test using a dead weight tester.  A 
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picture of the setup can be seen in Figure 4.2.  This test helped to show a couple 

of important items.  First, each Radcom unit has its own time clock, when the 

data is downloaded the unit’s own time is used.  If the three units are not fully 

synchronized than the speed at which the surge wave travels down a pipeline 

cannot de directly computed.  Using the dead weight test we were able to 

determine the difference in time between the three units.  The second item the 

dead weight test confirmed was the accuracy of the transmitter.  In Figure 4.2 

one can witness the layout of the three pressure transducers, note that the three 

transducers are at three different elevation, but all three units are within 6-inches 

or 0.2 psi.  For this work that accuracy was sufficient. 

 
Figure 4.1 – Field Work Activity II Example of Test Data 

 

Presented in Figure 4.3 is a graphical representation of the bench test.  

Notice that each of the units responds similarly and that the pressure displayed 

by each unit is the same after there is a chance for the signal to equalize.  Also 

note the difference in time between the units.  This difference in time is 

represented by the offset in the vertical portion of graphs. 
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Figure 4.2. – Field Work Activity II Bench Test 

 
Figure 4.3 – Field Work Activity II Bench Test Results 
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4.1.3 Field Work Activity III 
This field work activity involved the actual placement of the Radcom units 

in the field at the various selected sites.  Figures 4.4 through 4.6 illustrate typical 

setups.  The setup is simply comprised of two parts.  The data logger (blue box in 

figures) and the pressure transmitter (silver device at end of wire).  The pressure 

transmitter has a quick coupling that allows quick installation and removal.  The 

second half of the quick coupling has a ¼” NPT male outlet.  In Figure 4.4, this 

was connected to an existing 2” NPT male outlet corporation stop.  A 2” x 1” 

reducer fitting and a 1” x ¼” bushing were used to finalize the connection.  The 

transmitter was suspended from the ladder so entry into the confined space vault 

was not required every time data needed to be downloaded. 

 
Figure 4.4 – Field Work Activity III Site 1 Location 
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Figures 4.5 and 4.6 show how the Radcom unit was mounted using an 

existing fire hyd e to connect to 

the hydrant.  The adapter was made by taking a 4-1/2” fire hydrant cap, making a 

2” NPT tap and then using bushings to reduce down to the required ¼” NPT  

quick coupling.  To allow air to be bled off when opening the hydrant, a tee and 

pet cock were installed.  The hydrants were fully open during the monitoring to 

insure that the below ground weep holes were properly sealed. 

 

rant.  In this case a special adapter piece was mad

 
Figure 4.5 – Field Work Activity III Site 2 Location 

 
Figure 4.6 – Field Work Activity III Site 3 Location 

29 



www.manaraa.com

4.2 Data Collection 
Data collection is one of the most important items when constructing 

hydraulic models.  Without good background data one is merely making an 

approximation as to what was going on within the distribution system at the time 

under investigation.  Fortunately for this project, boundary condition data was 

available.  The data was not necessarily easy to obtain; however, it was 

available.  It is estimated to have taken nearly 120 hours to collect and compile 

the data for the different modeled scenarios.  Presented below is a list of the data 

obtained, how it was manipulated, where it was used and how it is to be 

presented. 

 

4.2.1 Daily Logs 

Each water treatment plant (Site 1 and 9) keeps daily logs with a variety of 

information recorded manually by the water treatment plant operators.  Pertinent 

information for this study included the starting and stopping time of each of the 

six high services pumps located at each plant, and each of the 13 pump storage 

and in-line booster pumps located throughout the distribution system.  The daily 

logs are approximately 12” x 24” in size and are kept as permanent records at 

each of the treatment plants.  Because there was no way to make an exact 

photocopy of each log, the pertinent information was recorded in a spreadsheet.  

Table 4.3 is an example of the recorded data for the high service pump for 

October 15, 2002.  All other pump logs are attached in Appendix B. 
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Table 4.3 – Example of Pump Log Sheet used for Boundary Condition 

HS Pump Log for Oct. 15, 2002 
 

Pump Shift 
# 12am - 8am 8am - 4pm 4pm - 12am 

WTP2-#6    
WTP2-#7 On On On 
WTP2-#8      
WTP2-#9      

WTP2-#10      
WTP2-#11      
WTP1-#10  On 1:46, Off 1:59   
WTP1-#11  On 2:06, Off 2:26   
WTP1-#12      
WTP1-#13 On   On 
WTP1-#14 On Off 1:43, On 2:46 On 
WTP1-#15 On   On 

 

4.2.2 Chart Recorders 

Each water treatment plant (site 1 and 9) uses circular chart recorders to 

continuously record high service flows and pressures.  The chart recorders are 

used at each plant to measure 100% of the flow leaving each plant and one chart 

recorder per plant is used to measure discharge pressure.  The circular chart 

recorders each receive electrical current signals from either a differential 

pressure transmitter (venturi meters) or a pressure transmitter (pressure).  These 

transmitters are used to convert pressure into a 4 – 20 milli amp current signal.  

The chart recorder than graphically converts the 4 – 20 milli amp signal onto 

chart paper at the corresponding value.  Figure 4.7, below is a picture of a 

circular chart recorder that is recording pressure.  Copies of the individual chart 

records are not included in the Appendix because the values on the chart 

recorder were recorded at ½ hour intervals into a spreadsheet.  An example of 

the recorded data is presented in Table 4.4. 
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Figure 4.7 – Example of Circular Chart Recorder used for Boundary Condition 
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Table 4.4 – Example of Circular Chart Data used for Boundary Condition 

 
 
4.2.3 SCADA System Data 

SCADA stands for Supervisory Control and Data Acquisition.  SCADA is

very powerful tool used by many water treatment plant operators to monitor, 

 a 

contro

A 

 

l and record many activities within a water treatment and distribution 

system.  Many older water distribution systems may not have a complete SCAD

system and will have to rely on the chart recorders; however the system utilized

by System #2 in the AWWARF Study had a fully implemented SCADA system. 
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34 

 be graphed.  Presented in Figures 4.8 and 

4.9 are examples of the data which was converted to a spreadsheet and graph. 

In Figure 4.8 and 4.9, the time of day is plotted on the horizontal axis 

starting at midnight with each vertical line representing one hour.  In Figure 4.8 

the vertical axis represents pressure in pounds per square inch (psi) with each 

horizontal line equal to 4 psi.  In Figure 4.9 the vertical axis represents tank level 

in feet with each horizontal line equal to 1-foot.  In Figures 4.8 and 4.9 notice the 

changes occurring between 2:30 PM and 3:30 PM.  This is the time that Scenario 

#2 was conducted for the AWWARF project and the revised model runs used for 

this study.  Note the change in pressures that occurred at Sites 5 & 6, an 

increase of approximately 8 – 12 psi.  Note the tank level changes in Figure 4.9 

during the same time interval.  In Figure 4.9 an interesting item occurs.  When 

the slope of the tank level is positive (increasing) the tank is filling.  Likewise 

when the slope is negative the tank is drawing down via the booster pumps; 

however, notice the dip that occurs after every slope change.  The reason for this 

is that the pressure transmitter that measures the tank level is not connected 

Some of the items monitored by the SCADA system, which were used for 

this work, include tank levels at all twelve distribution storage tanks as well as 

pressures from twenty-five locations around the distribution system.  Most of the 

pressure monitoring locations are used in conjunction with booster pumps.  

Section 4.5 will discuss the operation of the distribution system, but because 

System 2 in the AWWARF study is mostly a pressurized system with little floating 

storage, the pressure monitoring is extremely important.   

The SCADA system is comprised of a master unit located at Site 9 

(WTP2).  This master unit polls each of the 27 remote terminal units located out 

in the distribution system.  The data that is collected is recorded every 5 minutes 

to an ASCII file that is stored on the hard drive of each of the PC’s that 

communicate with the master unit.  During the time of this study the SCADA 

software used by the system operator was a late 1980’s DOS version with no 

ability to link to more modern Windows based software (thus reason for storing in 

ASCII file).  Using MS excel allowed the ASCII file to be converted into 

spreadsheet form that could in turn
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directly to the tank but rather to the pipe that fills or drains the tank.  This has no 

bearing on this work but is mentioned to explain the dip in tank level.  The dip is 

actually the velocity head component for the flow moving in the pipeline plus the 

sum of the headlosses required to push water into the tank or pull water from the 

tank.  Notice that the fill rate is higher and thus the dip is bigger. 
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Figure 4.8 – Example of Converted Pressure Data used for Boundary Conditions 

Sit

Site 5 

36

 

e 6 



www.manaraa.com

 

-

5

10

15

20

25

12:00 AM 2:00 AM

Ta
nk

 L
ev

el
 (f

ee
t)

Figur

30

4:00 A 00 AM 00 PM  PM 4:00 

e 4.  of Data d for Bo

PM 6:00 PM 8:00 PM 10:00 PM 12:00 AM

 

undary Conditions

2:00

 use

10:00 AM 12:

Tank Level 

Site 6 

37

M 6:00 AM 8:

9 – Example



www.manaraa.com

4.3 Com
After all the data is collected form the various sources the next step is to 

compi gani f the m rtan  in

hydraulic mod  demands.  T e h odel used for 

the AWWARF study and for this study was created by a third party consultant.  

The consultant created the model based on the maximum day of record for 

System #  w 3, 2000.  In order to describe how the 

demands are allocated we must first understand how the consultant allocated the 

demands within the model.  Presented below i by edu

followed by the consultant.  Please note that the e  the  

party consultant was done under the direction and supervision of the System 2 

enginee  s he author. 

 

• The consultant obtained the meter reading information for all customer 

accounts for the month of June 2000. 

• T e mation is organized by area codes.  Area codes 

are defined portions of the distribution system laid out on USGS Quad 

sheets and in the past loosely represent  gro  ten 

m r r  in one workin

• The Information Services staff provided the total water used in a month 

per area code minus the 25 highest cons   T  the r 

consumption was in 100 cubic feet increments and was converted to 

gallons per minute per area

 The Information Services staff also provided the total water used per 

month for the 25 highest consumers.  The unit of the water consumption 

putation of System Demands 

le and or ze the da a.  One ot ost impo t sfactor  any 

el is the allocation of he bas ydraulic m

2, hich occurred on June 1

s a step- -step proc re 

 work p rformed by third

ring taff, which included t

he m ter reading infor

ed the area that the up of

ete eaders could read g day. 

umers. he unit of  wate

 code. 

•

was in 100 cubic feet increments, which was converted to gallons per 

minute (gpm).  See table 4.5 for breakdown of the 25 largest users.  The 

largest consumer used 1097 gpm and the 25th largest consumer used 69 

gpm.  . 
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Table 4.5 – 25 Largest Water Users used for Boundary Conditions 

Large 
User # 

Customer Name 
 

Usage 
(100 cf) 

Usage 
GPD 

 
Usage
GPM 

1 Uniform Service Co 4,430 110,467 77
2 Hospital 1 7,189 179,233 124
3 Municipal City 1 6,745 168,167 117
4 Municipal City 2 6,503 162,133 113
5 Fed. Gov. VA Hospital 5,662 141,167 98
6 Federal Medical Center 17,809 444,033 308
7 Manufacturer 1  11,421 284,767 198
8 Municipal City 3 6,402 159,633 111
9 Golf Course 1 4,049 100,967 70

10 Water District 1 24,754 617,200 429
Race Track Venue 6,821 170,067 11811 

12 Golf Course 2 4,040 100,733 70
13 Manufacturer 2  10,084 251,433 175
14 Manufacturer 3 9,623 239,933 167
15 Water District 2 3,953 98,567 68
16 Water District 3 8,393 209,267 145
17 Manufacturer 4 6,257 156,000 108
18 Hospital 2 7,005 174,667 121
19 Manufacturer 5 63,328 1,578,967 1097
20 Manufacturer 6 5,409 134,867 94
21 Public University 41,183 1,026,833 713
22 Public University 3,981 99,267 69
23 Public University 5,309 132,367 92
24 Public University 5,959 148,567 103
25 Public University 4,694 117,033 81

 Totals 281,003 7,006,333 4866
 

 

• The consultant created an ArcView shape file with the area code coverage 

lines and over laid this shape file over the hydraulic model.  The hydraulic 

model is comprised of nodes (junctions) and pipes which connect the 

nodes.  Demands are typically placed at each node to represent the 

consumption of water along a water main. 
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40 

per 

ation in 

• Average daily demands were not included in the model, as the month of 

June 2000 had demands greater than average. 

 

The sum of the base demands allocated to the various nodes was 44.06 

MGD.  This value is 2 – 3 MGD higher than the normal daily average for System 

#2 but is reasonable for a summer month.  The next and most important step is 

to determine the appropriate peaking factor for the base demands.  A peaking 

factor is used to increase or decreased the amount of demand in the system 

throughout the day in order to more accurately simulate when the demand 

occurred.  This approach makes sense because at night there would be less 

residential demand then during the day.  The peaking factor is computed by 

taking the hourly change in tank level (computing flow from this change), adding 

that flow amount to the total production of the treatment plants and then dividing 

that amount by the 44.06 MGD base demand.  For periods where tanks are filling 

the demand factor will typically be less than 1.  Likewise when tanks are draining 

the peaking factor will typically be greater than 1.  Presented in Figure 4.10 is an 

example of the peaking factors used in this study.  A tabular list of peaking 

factors used is presented in Appendix B. 

Figure 4.10 presents the peaking factors for four different days.  June 13, 

2000, was the base model prepared by the consultant.  For all four data sets, in 

• The total demand per area code was divided by the total length of water 

mains within the area code. 

• The demand at each node was then computed by taking the demand 

foot of main and multiplying by ½ the total length of pipe that connected 

into each node.  Thus nodes that had more pipe length connected to them 

received a proportionally higher demand, while nodes connected with 

shorter pipe lengths received a smaller demand. 

• All the above demands were lumped together as demand type “R”.  The 

use of different demand types allows the use of different peaking factors. 

• The 25 highest demand were added to the model at the exact loc

which the use occurred and were given a different demand type. 
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general the peaking factors are less than 1 early in the morning and in the late 

evenings.  There exists a vast difference between the data for June 13, 2000 and 

the other data sets.  The peak hour on June 13, 2000, occurred at 9:00 PM 

where as the other data sets did not have a pronounced peak hour.  The July 4, 

2001, data has a peak in the early morning that was due to the power failure that 

occurred to the Site 1 WTP.  April 3, 2001, and October 18, 2002, had peaks that 

occurred in the late morning.  Based on the shape of the demand factor curv

the importance of the proper demand factor becomes clear.  Even within the

same water system the shape of the demand curve can change dramatically over 

the course of a day and over the course of the year. 

 

e, 
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4.4 Co

value 

pipe a

Calculations for wave speed are presented in Appendix C.  The general equation 

for v

 

mputation of Celerity Values 
After the allocation of demands the next most important requirement is the 

of celerity (a.k.a. wave speed).  Celerity is the speed of sound within the 

nd represents the speed the surge wave will travel in the main.  

wa e speed is presented below 

2
1 1 µ−=c

K is bulk modulus of fluid, ρ is density of fluid, D is diameter, µ is Poi

 is Young’s Modulus and e is wall thickness.  Based on eq

1 EeKDc : Eq. (1) 

where sson’s 

ratio, E uation 1: for 30-

inch reinforce concrete pipe (RCP) the wave speed or ‘a’ is equal to 3900 fps, for 

30-inch du ch 

polyvinyl chloride pipe (PVC) the wave speed is 1000 fps. 

On page 64 of t inal R  E ngineering 

Services, Inc., et. al. a value of 3000 fps was used for the wave speed.  They 

indicated that this is a typical value for metal and reinforced pipes with small 

amounts of air.  “The higher the wave speed used the greater the number of 

nodes with negativ curred m #5)” (E  and 

Engineering Servi 02).  This s sense, higher celerity 

(‘a’) value will prod rge va

In Dr. Wood’s and Dr. Lingireddy’s nalysis of System #2 Power Failure 

Eve

Val r 

trapped air greatly affects these values.  In the final analysis Dr. Wood used a 

celerity value of 3500 fps for all pipes regardless of size or material.   

As part of this work, different wave speeds were analyzed for each of the 

scenarios modeled.  This was done to help determine what amount of entrained 

air gives the best results.  The following runs were made. 

• All pipes with a wave speed value of 3000 fps

1
ρ

+
=

Ka

ctile iron pipe (DIP) the wave speed equals 3700 fps, and for 6-in

he Draft F eport by conomic and E

e pressures oc (Syste conomic

ces, et. al., 20  make since a 

uce a higher su lue. 

A

nt July 4, 2001”, (Nov. 2001) several wave speeds were run and analyzed.  

ues analyzed were 3500, 2500 and 1500 fps.  The amount of entrained air o

.  This number is based on 

values used in the modeling of System #5 in the AWWARF study. 
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• All pipes with a wave speed value of 3800 fps.  This value is the average 

value for all pipes based on material type and diameter in System #2 and 

was computed by computing taking the diameter times the length for each 

pipe size.  Multiplying that value by the computed celerity for that size and 

type of pipe, adding up all individual pipe segments and then dividing that 

sum by the total inch-foot of all mains.  The rounded value computed to be 

3800 fps. 

• All pipes will have a celerity value computed individually based on the size 

and type.  This computation includes material, size and wall thickness.  

See Appendix C for values. 

• Above values plus effect of entrained air.  Take the value above (individual 

celerity values) and multiply by a factor to account for the effects of 

entrained air.  The factor used is presented in Table 4.6. 

 

Table 4.6 – Air Entrainment Factors used for Surge Model Runs 

  % Air 
Material Factor Entrainment 

AC, DI, LJ, CI 0.51 0.10% 
PVC, HDPE 0.86 0.10% 
AC, DI, LJ, CI 0.35 0.25% 
PVC, HDPE 0.75 0.25% 
AC, DI, LJ, CI 0.26 0.50% 
PVC, HDPE 0.61 0.50% 
AC, DI, LJ, CI 0.20 1.00% 
PVC, HDPE 0.50 1.00% 

 

Presented below in Figure 4.11 is a graph showing the effects of entrained air 

on wave speed for Ductile iron pipe.  Further computations are included in 

Appendix C. 
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Effect of Air on Wavespeed
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Figure 4.11 – Effect of Air Entrainment on Wave Speed 

 

4.5 System #2 Description 
System #2, provides domestic, commercial and industrial water service, as 

well as public and private fire protection, to all or portions of six counties in the 

southeast United States.  The system also supplies wholesale water to three wat

districts, four municipalities and one army depot.  The system’s major source of 

supply is a river that in non-drought times yields greater than 72 MGD.  System #2 

also utilizes an 80 million gallon (MG) lake and a 600 MG reservoir.  The res

is augmented by a raw water line from the before mentioned river. 

The system has two treatment facilities: the WTP 1 (Site 1) has a reliable 

treatment capacity of 40 MGD and the WTP 2 (Site 9) has a reliable treatment 

capacity of 25 MGD.  Peak hy

er 

ervoir 

draulic capacity of both plants is 80 MGD (50 MGD 

from WTP1 and 30 MGD from WTP2).  Su

voir.  The lake is an emergency standby 

supply.  Water from the reservoir is pumped three miles to the plant.  WTP 2, 

pply for WTP2 can be obtained from the 

river and from either the lake or reser
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which was the syst open concrete 

settling basins, sixteen filters, a 600,000 gallon clearw ed under the filters, 

and a 450,000 gallon clearwell adjacen gh s e pumping station. 

The raw water supply T  ri  12.5 MGD intake 

pumps, housed on an intake platfo , p fr iver and push it up a 

400 foot cliff through a combinatio f  (having diameters of 

20-, 36- and 48-inches).  Traveling e tructure prevent debris 

from entering the wet well and int  pu e  delivered to the 

treatment plant and treated on site; a  TP 2 through a 

30-inch ductile iron transmission n e a ately 35,000 feet to the 

reservoir.  Two 11.0 MGD transfe m ert raw water to the 

reservoir. 

WTP 1 consists of 10  c  in themselves, affording 

mixing, flocculation, settling and filtration. apable of filtering up to five 

million gallons pe s approximately 

one million gallons of wa  a bove und storage tank holds an 

additional two million gallo  high ice pu nging from 8 to 10 MGD) 

are used to pump finished wat t ti . 

The distribution syste sis  th 0 miles of main ranging 

in size from 2-inch to 36-inch e  materials, including:  

copper, gray cast-iron, ductile iron, asb m , polyvinyl chloride 

(PVC) and pre-stressed con  M he ger in diameter 

comprise 89 percent of the stem has 

approximately 16.6 MG of water stored in tanks throughout the distribution 

 #2 

 

em’s original treatment facility, consists of two 

ell locat

t to the hi ervic

for the W P 1 is the ver.  Six

rm ull water om the r

n o  three raw water lines

 screens on th  intake s

ake mps.  Th water is

portion can be diverted to W

 mai xtending pproxim

r pu ps are utilized to div

 hydrotreaters, each omplete

  Each is c

r day.  A clearwell under the pumping station hold

ter and an djacent a gro

ns.  Six serv mps (ra

er in o the distribu on system

m con ts of more an 1,50

.  These mains ar of various

estos ce ent (AC)

crete. ains 6-inc s and lar

system’s total footage.  The sy

system with an additional 4 MG under construction in 2004 and 2005.  System

serves over 105,000 customers with an estimated population base of over 

350,000.  System #2 has over 6,500 public fire hydrants and over 1,600 backflow

prevention devices. 

Table 4.7 and Table 4.8 contain data pertaining to the make up of the 

distribution system piping. 
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Table 4.7 – System 2 Pipe Quantity by Size 

Pipe 
Size 
(in) 

 
Length 

(ft) 

 
% 

Total 
<2 283,556 3.54% 

3 156,112 1.95% 
4 397,098 4.96% 
6 2,013,719 25.17% 
8 3,258,595 40.73% 

10 27,970 0.35% 
12 1,061,641 13.27% 
14 3,450 0.04% 
16 267,749 3.35% 
20 55,515 0.69% 
24 318,039 3.98% 
30 155,640 1.95% 
36 624 0.01% 

Totals 7,999,708 100% 
 

Table 4.8 – System 2 Pipe Quantity by Material 

Material 
Type 

Length 
(ft) 

% 
Total 

AC 1,586,963 19.84% 
CI 2,371,332 29.64% 

CON 206,019 2.58% 
DI 2,997,087 37.46% 

GAL 16,808 0.21% 
PEP 3,450 0.04% 
PVC 817,424 10.22% 
STL 625 0.01% 

Total 7,999,708 100.00% 
 

The acronyms used by System #2 for identification of pipe material are:  AC - 

asbestos cement, CI - cast iron, CON – prestressed concrete pipe, DI – ductile 

iron, GAL - galvanized steel, PEP – high density polyethylene, PVC – polyvinyl 

chloride, STL – steel.  From Tables 4.7 and 4.8 it would appear as though the 36-

inch pipe should be steel, but that is not the case.  The 624 feet of 36-inch pipe is 

all ductile iron, the 625-feet of steel segment is 30-inch in size. 
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4.6 Hydraulic Model Description 
The hydraulic model for System #2 has evolved over the years from a 

simple 1000 pipe KYPipe model created in the early 1990’s to a full blown 12,500 

pipe P

mains 6-inch meter a er an devel be u ipe 

database and to allow th g of  perf  whe  

transmission main ad t

The 12,500 e m prov  too c me tine 

planning activities  t nt takes to run us ized 

versions of this m l w  a te s ted: a 

5,300 pipe versio d e v he m lot ork was 

performed by Dr’s ood an ired  Unive Ken nder the 

direction of the au r.  Th ipe as c  be  part of 

the AWWARF pro  268 e it exce  an ded 

period simulation S) r aso mou   As arison, 

the 12,500 pi ru p  30  r s the 

2,500 pipe EPS runs takes approximately 3 minutes to run using an Intel Pentium 

4 mob

As a comparison t istributi tem s pres  Table 

4.7 and 4 00 p l is co d of t s an  of pipe 

as presented in e 4. eria son le king at 

Table 4.9, it is interesting to note that there is 1.21% of pipe smaller than 6-

inches in diamete clud ode e  m als that 

many of these lines are required for cont rpose  ar tle or 

no demand and are not truly needed ex he fa ey model 

continuity.  It is also interesting to note that the model inc  mo h of 14-

ch diameter pipe than the syste .  The r  

based  

ipe2000 model finalized in 2001.  The 12,500 pipe model included all 

 in dia nd larg d was oped to sed as p

e m elinod  system orm cean n large

s h o be shut down for relocation work. 

pip odel has en to be umberso  for rou

due o the amou of time it , th skeleton

ode ere created nd calibra d.  Two size were crea

n an a 2,500 pip ersion.  T odel ske onizing w

. W d Linig dy at the rsity of tucky u

tho e 2,500 p  model w hosen to used as

ject 6 becaus yielded llent static d exten

 (EP uns in a re nable a nt of time.  a comp

pe EPS ns takes ap roximately  minutes to un wherea

ile CPU running at 2 GHz. 

o the d on sys tatistics ented in

.8 ,5, the 2 ipe de mo mprise he gth len d sizes

 Tabl 9.  The mat l compari  is in Tab 4.10.  Loo

r in ed in the m l.  A clos r look at the odel reve

inuity pu s, serve eas of lit

cept for t ct that th provide 

ludes re lengt

in m eason for this is that the field data is

on System #2 distribution map drawings and does not include some of the

piping located within the property lines for the water treatment and booster pump 

station facilities.  A closer look at the model reveals that a majority of the 14-inch 
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piping is located on the discharge piping of the high service pumps at WT

in yard piping at the pump storage facility Site 13. 

 

P1 and 

Table 4.9 – System 2 Pipe Quantity Comparison Field versus Model 

Pipe 
Size 
(in) 

Field 
Length 

(ft) 

Field 
% of 
Total 

Model 
Length 

(ft) 

Model 
% of 
Total 

<2 283,556 3.54% 22,810 0.71% 
3 156,112 1.95% 322 0.01% 
4 397,098 4.96% 15,861 0.49% 
6 2,013,719 25.17% 0 0.00% 
8 3,258,595 40.73% 1,638,031 51.02% 

10 27,970 0.35% 20,168 0.63% 
12 1,061,641 13.27% 797,126 24.83% 
14 3,450 0.04% 3,580 0.11% 
16 267,749 3.35% 244,942 7.63% 
20 55,515 0.69% 41,094 1.28% 
24 318,039 3.98% 320,024 9.97% 
30 155,640 1.95% 105,956 3.30% 
36 624 0.01% 442 0.01% 

Totals 7,999,708 100.00% 3,210,356 100.00% 
 

Table 4.10 – System 2 Pipe Material Comparison Field versus Model 

Material 
Type 

Field 
Length 

(ft) 

Field 
% 

Total 

Model 
Length 

(ft) 

Model 
% 

Total 
AC 1,586,963 19.84% 585,650 18.24% 
CI 2,371,332 29.64% 823,920 25.66% 

CON 206,019 2.58% 195,959 6.10% 
DI 2,997,087 37.46% 1,544,630 48.11% 

GAL 16,808 0.21% 0 0.00% 
PEP 3,450 0.04% 3,411 0.11% 
PVC 817,424 10.22% 55,797 1.74% 
STL 625 0.01% 989 0.03% 

Total 7,999,708 100.00%  100.00% 
 

In Table 4.9, it is also apparent that the model does not include as muc

of the small piping as the field does.  Although one may think this to be wrong, if 

one examines the definition of transmission main and considers that a 12-inch in 

parallel with a 6-inch main has the equivalent diameter as a 12.7-inch diame

h 

ter 
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main then one will realize how insignificant the 6-inch and smaller mains 

become.  The important part in reviewing the comparison of model to field d

the following. 

• When comparing the 2,500 pipe model to the 12,500 pipe model one ma

assume that only 20% of the piping would be represented (2,500/12,

in the smaller model; however, approximately 40% of the length of the 

entire distribution system is represented in the 2,500 pipe model. 

• 8-inch piping makes up 40.7% of the distribution system and 

approximately 5

ata is 

y 

500) 

0% of this amount is represented in the 2,500 pipe model. 

• 

 

totals include approximately 50,000 feet of 30” raw water main that should 

In Table 4.10 it is apparent that the model features more rigid pipe (AC, 

CI, DI & CONC) than the field.  This is due to the fact that most of the PVC mains 

are not included in the model.  PVC main is less rigid then AC, CI, DI & CONC, 

thus it is possible depending on the type of surge event that the model could 

produce higher surge magnitudes since the field will have more capacity to 

soften the transient event. 

 

4.7 Pipe2000 EPS Runs 
One of the recommendations of the AWWARF study was that more 

information was needed to verify system operations in terms of pump and tank 

status, better estimates of demands, etc.  In order to verify that that the pump 

and tank status as well as the demands are correct for each of the modeling 

scenarios, EPS runs using Pipe2000 were conducted on the hydraulic model for 

each scenario day (April 4, 2001, October 15 & 18, 2002 and July 4, 2001).  The 

mai

75% of the 12-inch pipe is represented in the 2,500 pipe model. 

• 91% of the 16-inch pipe is represented in the 2,500 pipe model. 

• 75% of the 20-inch pipe is represented in the 2,500 pipe model. 

• 100% of the 24-inch pipe is represented in the 2,500 pipe model. 

• 100% of the 30-inch pipe is represented in the 2,500 pipe model. (Field

not be included in the totals). 

n reason for performing these EPS runs was to verify that the changes 
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(changes includes pump and tank cycles as well as plant production rates)  were 

day.  Once the EPS model correlated well, then the 

hydrau

e 

ure 4.9, a 

gra  

are we

times 

well as e used as boundary 

con ti

Presen

pressu s. 

correct throughout the 

lic surge analysis would be started for the different scenarios.  The main 

components needed to run the EPS models are:  hourly demand factors, pip

changes, node changes, and pump changes.  In Figure 4.10, a graph was 

presented illustrating the demand factors throughout the day.  In Fig

ph was presented of a typical pump storage tank level, graphs for all tanks 

re used to determine start / stop times for tank filling and start and stop 

for pump starts. 

In Tables 4.3 and 4.4 examples are given of high service pump status as 

 flows at each treatment plant.  This information will b

di ons in the EPS model as well as verification of model performance.  

ted in Figure 4.12 and 4.13 are comparisons of actual plant flow rates and 

res (from circular chart recorders) for WTP1 versus model prediction
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02 Figure 4.12 – EPS Runs Model vs. Field: Flows at WTP1 on 10-18-
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Figure 4.13 – EPS Runs Model vs. Field: Pressure at WTP1 on 10-18-02 

 

4.8 Surge2000 Runs 
Upon completion and verification that the hydraulic model simulated field 

conditions the next step was to create the surge model.  The modifications 

needed to create the surge model from the EPS hydraulic model are quite 

simple.  The following steps are taken to make the model change. 

• First the appropriate demand factor must be used.  Delete the demand 

factors for all cases in the EPS model except the value of the demand 

f ve 

been assigned to each pipe within the model.  As discussed in Section 4.4 

different values for wave speed will be investigated. 

• Verify that correct for the 

time at which the surge model will be run.  As an example, booster pumps 

are turned off and on through out the day in the EPS model.  Since 

System #2 has little floating storage, the effect of missing a booster pump 

that is running can be great. 

actor at the time of the actual test.  Verify the values for wave speed ha

the changes of pump, pipe and tank status are 
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• Make the appropriate changes to the Pipe2000 setup files to insure that a 

p 

 

 

 node. 

 

 

illustrated in Figure 4.16, two sets of input data is needed to create the surge 

event for each of the scenarios.  Data set one is the closing speed of the ball 

check valve.  The second data set is the point during the closing of the ball valve 

that power is shutoff to the pump’s motor.  Presented in Figure 4.14 and 4.15 are 

examples of valve closing and pump trip. 

 

Surge2000 model will be run.  It is assumed that the reader of this paper 

knows how to operate Pipe2000 and Surge2000 and knows the steps 

needed in this part. 

• Determine what event is causing the surge to occur and set that event u

in Surge2000.  This includes active valve settings and pump trips. 

• In Surge2000 under System Data >> Simulation Specs >> set the demand 

calculation to pressure sensitive.  During the surge model run this setting

alters the demand at each node based on pressure.  This approach is

reasonable since higher pressures will increase demand at a given

In order to create the surge event, field data must be entered into the Surge2000

software.  Because the pumps simulated all feature ball check valves as 

 
Figure 4.14 – Example of Active Valve Input Data used in Surge Model 
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Figure 4.15 – Example of Pump Trip Input Data used in Surge Model 

 

 
Figure 4.16 – Ball Check Valve Configuration 
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4.9 Surge2000 Pressure Contou
One of the powerf e2000 is the ability to 

ntours.  The importance of this tool is that it provides a visual 

repres

f 

 site 5 

ntour 

s. 

r Generation 
ul features of Pipe2000 and Surg

create pressure co

entation of pressures at a given time throughout the model.  For surge 

modeling this feature can be used to determine the extent to which pressures 

drop below 20 psi or 0 psi.  The 20 psi value is recommended and used as a 

lower bound for pressures in a distribution system due to the increase potential o

a cross connection and is a minimum allowable pressure during flushing or fire 

flow events.  Normally 30 psi must be available at all points in a distribution 

system during normal demands.  See Section 5.9 for further discussion. 

Presented in Figure 4.17 is an example of pressure contours around

from a modeling scenario.  In order to generate this minimum pressure co

map, in Surge2000, go to Map Settings > Emphasis/Contour > Node Contour

 

 
Figure 4.17 – Surge Model: Sample Results of Pressure Contours 

ography to determine which areas should be 

targeted for surge mitigation equipment, backflow preventers or other devices.  

The tool allows engineers and utility owners to target areas for increased cross 

 

The pressure contours in Figure 4.17 can then be overlaid with 

distributions maps or aerial phot

55 



www.manaraa.com

56 

ed water quality monitoring should a surge 

event be modeled that indicates high 

hydraulic e

node.  The effect this 

skeletoniz

conclude that the skeletonizing of this model would have minor effects. 

connection programs and increas

potential for a low and/or negative event. 

 

4.10 Surge2000 Schematic 
Presented in Figure 4.18 is a schematic of the model used for both the 

xtended period simulations (EPS) and the surge models.  In order to 

give scale to the model, the direct distance from WTP1 (Site 1) to site 3 is 

approximately 22,200 feet.  The direct distance between Site 3 and Site 6 is 

approximately 36,500 feet.  Note that the distance via water mains is 

approximately 22,400 feet from Site 1 to Site 3 and 50,000 feet from Site 3 to 

Site 6 via the largest diameter mains. 

In order to aid in the computation of the surge model, all intermediate 

nodes were removed, however, the actual lengths of the pipes remain the same.  

Also in order to create the skeletoninzed model, all long dead end lines were 

eliminated and the demand entered at the last non-deleted 

ing has on the model is not fully known, but given the fact that there 

were typically no changes in velocity occurring during these times, one could 
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F tic oigure 4.18 – Schema  of System 2 Surge M del
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CHAPTER 5 

RESULTS AND DISCUSSION 
5.1 Int n

ection 3.2, the results of the AWWARF project 2686 were presented in 

Tables 3.1, 3.2 and 3.3.  These tables showed how the modeling effort correlated 

with th or’s . tu  

libra  u  the data available from the pump drawdown tests conducted at 

TP1 nario 2 ng dels.  

 this rk, each scenario was run as an independent model using actual 

und conditions verified by plant SCADA and WTP daily logs and then 

nnin e g d 

te  the t data fit and dra onclusions from l ing at the four 

de nt ru .  The boundary conditions used to set up each model was 

sed  i ls, 

mp us and factors and the surge causing ev .  In each model, the 

mp u ds. 

Each scenario featured a different surge causing event.  In scenario #1 a 

tal o ee s e events were m led using six different values of celerity for 

ch e n 

e o #2 a l of four surge events were modeled g six different values 

 c  for e h eve .  In total t

ena  s na rg s m le t 

lues ty  to l s odel runs w e ormed for 

ena   In scena  #4 three surge events were modeled using six different 

lues of celerity for each event.  In total eighteen model runs were performed for 

enario #4. 

f k ur ls e  r  six 

diffe  o m -s ated 

and run. 

rod
In S

uctio  

e a

ted

.  S

wo

uth  collected field data  In the AWWARF s dy, the model was

ca

W

In

bo

ru

de

in

ba

pu

pu

to

ea

sc

of

sc

va

sc

va

sc

sing

ce  #1 and Scenario #  were then run usi  the calibrated mo

ary 

g m

ine

ultipl models with varyin air entrainment an celerity values to 

rm

pe

bes

ns

nfo

em

ter

urg

 to

tota

ac

w c

d in

use

ode

l r

wenty-four model runs were performed for 

ook

on

ent

sur

ed

usin

nde

 on

stat

file

 the rmation presente  Chapter 4, and c sisted of tank leve

, d

s (S  diagrams) were d as well as pres e sensitive deman

f thr

vent.  In tal eighteen mode uns were perform  for scenario #1.  I

nari

elerity

rio 

 of

rio 

nt

rio #2.  In

leri

ce #3 one su e event wa ode d using six differen

 ce

#3.

 for each

rio

 event.  In ta ix m er perf

As

t v

 pa

al

rt o

ues

 thi

f c

s w

ele

or

rit

ele

or 

ve

ea

n s

ch 

ge

od

 m

el. 

ode

 In

 w

ta

ere

l si

 cr

xty

ate

ix m

d a

o

nd

de

un 

we

us

re 

ing

creren y f  to ls 
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5.2 Scenario #1 Results 
Scenario #1 involved the shutdown of three different high service pumps 

at WTP1 (Site #1) with different closing speeds on the pump check ball valves 

(see Figure 4.16).  The surge wave was collected by field equipment located 

Site #1, #3 and #5. 

The first model created in this scenario involved the shutdown on a single 

900 Hp - 10 MGD high service pump with a ball valve closing speed of 55 

seconds and a pump trip (power cut off) occurring 26 seconds after the ba

started to close.  Th

at 

ll valve 

e second model created in this scenario involved the 

shutdo

 

 

occurr

wn on a single 700 Hp - 8 MGD high service pump with a ball valve 

closing speed of 41 seconds and a pump trip (power cut off) occurring 21 

seconds after the ball valve started to close.  The third model created in this 

scenario involved the shutdown on a single 800 Hp - 8 MGD high service pump

with a ball valve closing speed of 25 seconds and a pump trip (power cut off)

ing 16 seconds after the ball valve started to close. 

Presented in Table 5.1 and 5.2 are the results of the runs for this scenario 

as well as the computed differences between the model and field data.
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Table 5.1 – Tabular Surge Model Results for Scenario #1 
 

Pump # Site #1 Site #3 Site #5 
(Time of Pressure Range Pressure Pressure Range Pressure Pressure Range Pressure 
Closure) Max Min Drop Max Min Drop Max Min Drop 

Model Name (psi) (psi) (psi)  (psi) (psi) (psi)
Shutdown of Pump 14 (55 sec, 26 sec trip) 

Field Data 159 87 72 69 19 50 40 33 7 
Model (AWWARF Study) 148 86 62 51 12 39 30 23 7 
Model 1 - 3000fps all pipes 148 87 61 70 20 50 41 25 16 
Model 2 - 3800 fps all pipes 403 -14 417 187 -14 201 42 -14 56 
Model 3 - ws varies 148 80 68 71 16 55 41 22 19 
Model 4 - 0.1% air all pipes 148 102 46 70 34 36 41 27 14 
Model 5 - 0.25% air all pipes 149 97 52 70 32 38 40 31 9 
Model 6 - 0.5% air all pipes 149 100 49 70 44   26 40 34 6 

Shutdown of Pump 10 (41 sec, 21 sec trip) 
Field Data 158 95 63 67 27   40 39 32 7 
Model (AWWARF Study) 146 106 40 50 24 26 29 24 5 
Model 1 - 3000fps all pipes 149 91 58 69 24 45 41 27 14 
Model 2 - 3800 fps all pipes 482 -14 496 208 -14 222 42 -14 56 
Model 3 - ws varies 149 84 65 69 18 51 40 24 16 
Model 4 - 0.1% air all pipes 149 104 45 69 36 33 41 29 12 
Model 5 - 0.25% air all pipes 149 103 46 69 41 28 40 32 8 
Model 6 - 0.5% air all pipes 149 107 42 69 46 23 40 34 6 

Shutdown Pump 11 (25 sec, 16 sec trip) 
Field Data 158 113 45 67 39  40 32 8  28
Model (AWWARF Study) 144 52 92 49 -13 62 29 16 13 
Model 1 - 3000fps all pipes 149 98 51 69 30 39 41 29 12 
Model 2 - 3800 fps all pipes 470 -14 484 205 -14 219 42 -14 56 
Model 3 - ws varies 149 93 56 69 25 44 40 27 13 
Model 4 - 0.1% air all pipes 147 108 39 68 39 43 33 10 29 
Model 5 - 0.25% air all pipes 148 74 74 68 25 43 34 9 43 
Model 6 - 0.5% air all pipes 150 95 55 71 46 44 5 39 25 
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Table 5.2 – Difference between Model Results and Field Data for Scenario #1 
 

P Site #5 ump # Site #1 Site #3 
(T e Pre ge Pressure ime of Pressure Range Pressur Pressure Range ssure Pressure Ran
Closure) Max Min Drop D n Drop Max Min rop Max Mi

Mod (  (psi) el Name (psi) (psi) (psi) psi) (psi)
Shutdown of Pu ) mp 14 (55 sec, 26 sec trip

Model (AWW 0 ARF Study) -11 -1 -10 -18 -7 -11 -10 -1 0 
Model 1 - 3000fps all pipes -11 0 -11 1 1 0 1 -8 9 
Model 2 - 3800 fps all pipes 244 -101 345 118 -33 151 2 -47 49 
Model 3 - ws varies -11 -7 -4 2 -3 5 1 -11 12 
Model 4 - 0.1 7 % air all pipes -11 15 -26 1 15 -14 1 -6 
Model 5 - 0.2 s -20 - 2 5% air all pipe -10 10 1 13 -12 0 2 
Model 6 - 0.5  -23 1 25 -24 0 -1 % air all pipes -10 13 1 

Shutdown of Pump 10 (41 sec, 21 sec trip) 
Model (AWW  11 -23 -17 -3 -14 -10 - -2 ARF Study) -12 8 
Model 1 - 300 -4 -5 2 -3 5 2 -0fps all pipes -9 5 7 
Model 2 - 380  -109 433 141 -41 82 3 -40 fps all pipes 324 1 6 49 
Model 3 - ws -11 2 2 -9 11 1 -varies -9 8 9 
Model 4 - 0.1% air all pipes -9 9 -18 2 9 -7 2 -3 5 
Model 5 - 0.2 s 1 5% air all pipe -9 8 -17 2 14 -12 1 0 
Model 6 - 0.5 12 -21 2 19 -17 1 -1 % air all pipes -9 2 

Shutdown p 11 (25 sec, 16 sec tripPum ) 
Model (AWWARF  -61 47 -18 -52 34 -11 -1Study) -14 6 5 
Model 1 - 3000fps all pipes -9 -15 6 2 -9 11 1 -3 4 
Model 2 - 3800 fps 48  all pipes 312 -127 439 138 -53 191 2 -46 
Model 3 - ws varie 5 s -9 -20 11 2 -14 16 0 -5 
Model 4 - 0.1% air  -5 -6 1 0 1 3 1  all pipes -11 2 
Model 5 - 0.25% a s  -39 29 1 -14 15 3 2 1 ir all pipe -10
Model 6 - 0.5% air -18 10 4 7 -3 4 7 -3 -8  all pipes 

61 



www.manaraa.com

From Tables 5.1 and 5.2 it is seen that using a wave speed of 3800 ft per second 

for all pipe dy, 

listed the maximum pressure observed, the minimum pressure observed as well 

as the difference between these two values.  In terms of predicting negative 

pressure, which could potentially lead to intrusion, the most important results are 

the minimum pressure computed by the model.  The magnitude sheds some light 

into how well the model tracts with the field data, but the most important result is 

the minimum pressure observed and the length of time for the low and or 

negative pressure. 

In review of Table 5.1 one can see that the AWWARF study predicted 

lower pressures than the field data for each of the scenarios except at Site #1 on 

shutdown of Pump10.  In comparison, each of the model runs as a part of this 

work, yielded results both above and below the field data.  This shows that the 

value chosen for celerity is critical in the accurate modeling of surge events. 

Several methods were explored to determine which model fit the field test 

data the best.  In the end, because each site or data point is equally important, a 

simple ave puted 

and compared.  The formula below was used to determine best-fit percentage: 

s yields poor results.  In presenting the results, the AWWARF stu

rage of the absolute value of the percentage difference was com

 

⎥
⎦

⎢
⎣

where MR is model results, FR is field results, n is the number of data set.  The

absolute value was used to insure that data sets that had 50% correlation on

test and 150% correlation on another test did not average out to be 100%.  In 

addition, a comp

⎥
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 one 

arison was made between the magnitude of pressure drop 

record

⎤⎡ ⎞⎛ ⎤⎡ ⎞⎛MRsets date of #n,

⎜
⎝
a

Fit Best

ed in the field versus the magnitude of the pressure drop predicted in the 

model.  To compute this value the sum of the pressure drop magnitudes were 

added up for each model and divided by the sum of the pressure drop 

magnitudes recorded in the field. 
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wave speed value of 3000 fps that woul

Presented in Table 5.3 is a comparison of percent fit for each model run 

using the above mentioned average fit approach and magnitude of pressure drop 

approach.  Looking at the two computed correlation values, we find that for the 

55 second shutdown model 1 and 3 yielded better results than the AWWARF 

study.  In the 41 second and 25 second shutdowns, models 1, 3, 4, 5 & 6 all 

yielded better results than the AWWARF study.  Of all the models in each of the 

shutdowns model 1 fit the best overall.  This equates to a model with a celerity or 

d be between 0% air entrainment and 

0.1% air entrainment. 

Also presented in Table 5.3 is the length of time in which pressures were 

below 20 psi for the best-fit models.  As in the field the model did not predict any 

amount of time where the pressure at any of the sites was less than 20 psi. 
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Table 5.3 – Best-Fit Computation for Scenario #1 Surge Results 

Pump #  Pressure Time 
(Time of Max - M Drop less than  in 
Closure) Best Best 20 psi(*) 

Model Name Fit Fit (sec) 
Shutdown of Pump 14 (55 sec, 26 sec trip) 

M WA  odel (AW RF Study) 79% 84% 
Model 1 - 3000fps all pipes 93% 98% 0 
Model 2 - 3800 fps all pipes %  -27% 522
Mod s varies 88% 110%  el 3 - w
Model 4 - 0.1% air all pipes 79% 74%  
Model 5 - 0.25% air all pipes 84% 77%  
Model 6 - 0.5% air all pipes  74% 63% 

Shutdown of Pump 10 (41 sec, 21 sec trip) 
Model (AWWARF Study) 82% 65%  
M 0 % 0 odel 1 - 3 00fps all pipes 93% 106
Model 2 - 3800 fps all pipes %  -39% 704
Mod  - ries 86% 120%  el 3 ws va
Model 4 - 0.1% air all pipes  89% 82% 
Model 5 - 0.25% air all pipes 88% 75%  
Model 6 - 0.5% air all pipes 83% 65%  

Sh n Pump 11 ( 5 se sec trip) utdow 2 c, 16 
Model (AWWARF Study) %  50% 206
M  - 30 ps all pipes 91% 126%  odel 1 00f
Model 2 - 3800 fps all pipes -33% 937%  
M s va  odel 3 - w ries 87% 140% 
Model 4 - 0.1% air all pipes 96% 96% 0 
Model 5 - 0.25% air all pipes %  85% 156
Model 6 - 0.5% air all pipes %  87% 105
(*) at Site 5, actual field time below 20 psi was 0 seconds for each case. 
value in bold is best-fit 
 

Presented in Figures 5.1, 5.2 and 5.3 h strate how the 

best-fit data for each pump shutdown correlat

shows the field and model press

ar

ed with the field data.  Each figure 

e grap s that illu

ure at sites 1, 3 and 5. 
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Figure 5.2 – Scenario #1 Pump 10 Shutdown Field vs. Model 1 
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Fi .3 – Scenario #1 Pu  11 Shutdown Field vs. Model 4 

io #2 Results 
S rio  involved four pump tdowns of one three hundred 

sepo ated out in the 

rib n system (Site #6).  Each shutdown was with a different ball valve 

in .  The sur  w  collected ment located at Site 

T o en

osing speed of 22 seconds and a pump 

fter the ll val started to close.  The 

booster pump with a ball valv

(power cut off) occurring 15 seconds after the ball valv

third model created in this scenario involved the shutdown of the same booster 

pump with a ball valv

off) occurring 19 s a

created in this scenario involved the shutdown of the same booster pump with a 
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ball valve closing speed of 52 seconds and a pump trip (power cut off) occurring 

33 seconds after the ball valve started to close. 

Presented in Table 5.4 and 5.5 are the results of the runs for this scenario 

as well as the computed differences between the model and field data 

om Tables 5.4 and 5.5 it is seen that using a wave speed of 3000 fps 

 3 for a su

WAR st , listed the maximum pressure observed, the minimum pressure 

erve ll a ee rms of predicting 

ative essure that could potentially lead to intrusion, the most important 

ults a the minimum pressure computed by the model.  The magnitude sheds 

e lig o

o sult is the minimum pressure observed and the length of time for the 

 a gative pressure. 

Fr

80and

AW

obs

neg

res

som

imp

low

0 f

F 

d a

 pr

ps ll pipes yields poor re lts.  In presenting the results, the 

udy

es w s the difference betw n these values.  In te

re 

ht 

t re

into h w well the model tracts with the field data, but the most 
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Table lar cen

Pump # 5 

 5.4 – Tabu

Site #6 

Surge Results for S
 

Site #

ario #2 

Site #3 
(Time of Pressure Range Pressure Pressure Range Pressure Pressure Range Pressure 
Closure) Max Min Drop Max Min Drop Max Min Drop 

Model Name (psi) si) (psi) (psi) (psi) (psi) (p
Pump 1 (22 sec, 16 sec trip) 

Field 98 37 61 45 33 12 74 68 6 
Model (AWWARF Study) 82 41 41 35 19 16 58 50 8 
Model 1 - 3000fps all pipes 153 -14 68 167 58 -10 75 60 15 
Model 2 - 3800 fps all pipes 118 -14 66 132 59 -7 75 59 16 
Model 3 - ws varies 97 29 68 44 10 34 75 63 12 
Model 4 - 0.1% air all pipes 97 38 25 59 45 20 74 67 7 
Model 5 - 0.25% air all pipes 99 32 67 39 21 18 74 69 5 
Model 6 - 0.5% air all pipes 99 43 21 56 47 26 74 70 4 

Pump 1 (24 sec, 16 sec trip) 
Field 99 38 61 45 34 11 73 67 6 
Model (AWWARF Study) 83 42 41 35 20 15 58 50 8 
Model 1 - 3000fps all pipes 163 -14 68 6177 58 -10 75 0 15 
Model 2 - 3800 fps all pipes 114 -14 68 5128 54 -14 75 7 18 
Model 3 - ws varies 97 28 36 669 44 8 75 1 14 
Model 4 - 0.1% air all pipes 97 37 31 660 48 17 74 7 7 
Model 5 - 0.25% air all pipes 100 32 28 668 49 21 74 9 5 
Model 6 - 0.5% air all pipes 98 43 22 70 4 74 48 26 55 
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ar or nt

6 te #3 

Table 5.4 – Ta

S

bul

ite #

Surge Results f Scena

Sit

rio

e #5

 #2

 

 (co inued) 

Pump # Si
(Time of Pressure Range Pressure Pressur re e Pressure e Range Pressu  Pressure Rang
Closure) Max Min Drop Max Min Drop Max Min Drop 

Model Name (psi) (psi) (p   si) (psi) (psi) (psi)
Pump 1 (30sec, 19 sec trip) 

Field  100 40 60 47 35 12 77 70 7  
Model (A ) 44    WWARF Study  83  39 36 21 15 59 51 8 
Model 1 - pe -1 15  3000fps all pi s 168 4 182 50 -5 55 75 60 
Model 2 - ipes -14 22  3800 fps all p 168 182 53 -12 65 75 53 
Model 3 - 27 4 36 59 16 ws varies 97 70 4 8 75 
Model 4 - pes 97 37 60 4 16 32 74 68 6  0.1% air all pi 8 
Model 5 - pipes 99 32 67 51 21 74 69 5  0.25% air all  30 
Model 6 - pes 100 43 57 4 26 23 74 70 4  0.5% air all pi 9 

Pump 1 (52sec, 33 sec trip) 
Field 99 44 55 48 37 77 71 11  6 
Model (A ) 84 50 34 36 23 59 53WWARF Study  13  6 
Model 1 - pes 205 -14 219 6 -14 80 75 56  3000fps all pi 6 19 
Model 2 - ipes  3800 fps all p 238 -14 252 58 -10 68 77 53 24 
Model 3 - 16 ws varies 99 27 72 45 8 37 75 59 
Model 4 - pes 97 37 60 46 16 30 75 65 10  0.1% air all pi
Model 5 - pipes 103 32 71 48 21 27 75 69 6  0.25% air all 
Model 6 - pes 102 43 59 49 26 23 74 71  0.5% air all pi 3 
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Table 5.5 – Difference between Model Results and Field Data for Scenario #2 

Pump # Site #6 Site #5 Site #3 
(Time of Pressure Range Pressur Pres  Range Pressure Pressure Range Pressure e sure
Closure) Max Min Drop Max Min Drop Max Min Drop  

Model Name (psi) (psi) i) (psi) (psi) (psi) (ps
Pump 1 (22 sec, 16 sec trip) 

Field 0 0 0 0 0 0 0 0 0  
Model (AWWARF Study) -16 4 -20 -1 -14 4 -16 -18 2 0 
Model 1 - 3

 

Table 5.5 – Difference between Model Results and Field Data for Scenario #2 

Pump # Site #6 Site #5 Site #3 
(Time of Pressure Range Pressur Pres  Range Pressure Pressure Range Pressure e sure
Closure) Max Min Drop Max Min Drop Max Min Drop  

Model Name (psi) (psi) i) (psi) (psi) (psi) (ps
Pump 1 (22 sec, 16 sec trip) 

Field 0 0 0 0 0 0 0 0 0  
Model (AWWARF Study) -16 4 -20 -1 -14 4 -16 -18 2 0 
Model 1 - 3000fps all pipes 55 -51 106 1 -43 56 1 -8 9 3 
Model 2 - 3800 fps all pipes 20 -51 71 1 -40 54 1 -9 10 4 
Model 3 - ws varies -1 -8 7 -1 -23 22 1 -5 6  
Model 4 - 0.1% air all pipes -1 1 -2 0 -13 13 0 -1 1 
Model 5 - 0.25% air all pipes 1 -5 6 -6 -12 6 0 1 -1 
Model 6 - 0.5% air all pipes 1 6 -5 2 -7 9 0 2 -2 

Pump 1 (24 sec, 16 sec trip) 
Field 0 0 0 0 0 0 0 0 0  
Model (AWWARF Study) -16 4 -20 -1 -14 4 -15 -17 2 0 
Model 1 - 3000fps all pipes 64 -52 116 1 -44 57 2 -7 9 3 
Model 2 - 3800 fps all pipes 15 -52 67 9 -48 57 2 -10 12 
Model 3 - ws varies -2 -10 8 -1 -26 25 2 -6 8  
Model 4 - 0.1% air all pipes -2 -1 -1 3 -17 20 1 0 1 
Model 5 - 0.25% air all pipes 1 -6 7 4 -13 17 1 2 -1 
Model 6 - 0.5% air all pipes -1 5 -6 3 -8 11 1 3 -2 
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e betw nd Field Data for S #2 (

S Site #5 

Table 5.5 – Differenc

Pump # 

ee

ite

n 

 #6

Mo

 

del Results a cenario continued) 

Site #3 
(Time of Pressure Ran P ange Pressuge Pressure ressure R re Pressure Range Pressure 
Closure) Max Min Drop Max Min Drop Max Min Drop 

si) (psi) Model Name (psi) (psi)(psi) (psi)  (p
Pump 1 (30sec, 19 sec trip) 

Field 0 0  0 0 0 0  0 0 0 
Model (AWWARF Study) -17 4 -2 -11 -14 3 1 -18 -19 1 
Model 1 - 3000fps all pipes 68 -54 122 3 -40 43 -2 -10 8 
Model 2 - 3800 fps all pipes 68 -54 122 6  53 -47 -2 -17 15 
Model 3 - ws varies -3 -1 -3  3 10  -27 24 -2 -11 9 
Model 4 - 0.1% air all pipes -3 -3 0  20 1 -19 -3 -2 -1 
Model 5 - 0.25% air all pipes -1 -8 7  184 -14  -3 -1 -2 
Model 6 - 0.5% air all pipes 0 3 2 11 -3 -9 -3 0 -3 

Pump 1 (52sec, 33 sec trip) 
Field 0 0 0 0 0  0  0 0 0 
Model (AWWARF Study) -15 6 -1  2 --21 2 -14 -18 18 0 
Model 1 - 3000fps all pipes 106 -5 1  69 -8 164 8 -51 -2 15 13 
Model 2 - 3800 fps all pipes 139 -58 197 10  57 --47 0 18 18 
Model 3 - ws varies 0 -17 17 -3 -29 26 --2 12 10 
Model 4 - 0.1% air all pipes -2 -7 5 -2  19 --21 -2 6 4 
Model 5 - 0.25% air all pipes 4 -1 0  16 -2 16 -16 -2 2 0 

0 -3 -3 -1 4  12 1 -11Model 6 - 0.5% air all pipes 3 
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In review of Table 5.4 we find that the AWWARF models and the models 

run as part of this work both had trouble predicting the field data at each of the 

three sites.  In terms of minimum pressure predictions, the AWWARF model was

higher at site #6 (immediately downstream of tripped pumped) than the field dat

but was lower at the other sites for the remaining test.  In contrast, the models as

part of this work

 

a 

 

 predicted lower values at all sites but predicted well at higher air 

entrainment values (i.e., lower celerity values) 

Several methods were explored to determine which model fit the field test 

data the best.  In the end, because each site or data point stands equally on its 

own a simple average of the percentage difference was computed and compared 

using equation 2. 

Presented in Table 5.6 is a comparison of percent fit for each model run 

using the before mentioned best-fit approaches.  From this data it can be seen 

that most of the model runs 4, 5 and 6 all yielded better fits than the AWWARF 

study in terms of the max. min. fit, except for the 52 second pump shutdowns on 

model 3.  In each pump shutdown model 6 had the best-fit.  This equates to a 

model with a celerity value that would have air entrainment of around 0.5%.   

Also presented in Table 5.6 is the length of time in which pressures were 

below 20 psi for the best-fit models.  As with the field results, the model did not 

predict any amount of time where the pressure at any of the sites was less than 

20 psi. 
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Table 5.6 - Best-Fit Computation for Scenario #2 Surge Results 

Pump #  Pressure Time 
(Time of Max - Min Drop less than 
Closure) Best Best 20 psi(*) 

M (sec) odel Name Fit Fit 
Pump 1 (22 sec, 16 sec trip) 

Model (AWWARF Study) 77% 82%  
Model 3 - ws varies 83% 144%  
Model 4 - 0.1% air all pipes 93% 115%  
Model 5 - 0.25% air all pipes 89% 114%  
Model 6 - 0.5% air all pipes 92% 103% 0 

Pump 1 (24 sec, 16 sec trip) 
Model (AWWARF Study) 77% 82%  
Model 3 - ws varies 80% 153%  
Model 4 - 0.1% air all pipes 90% 126%  
Model 5 - 0.25% air all pipes 89% 129%  
Model 6 - 0.5% air all pipes 92% 104% 0 

Pump 1 (30sec, 19 sec trip) 
Model (AWWARF Study) 77% 78%  
Model 3 - ws varies 77% 154%  
Model 4 - 0.1% air all pipes 88% 124%  
Model 5 - 0.25% air all pipes 88% 129%  
Model 6 - 0.5% air all pipes 93% 106% 0 

Pump 1 (52sec, 33 sec trip) 
Model (AWWARF Study) 77% 74%  
Model 3 - ws varies 76% 174%  
Model 4 - 0.1% air all pipes 85% 139%  
Model 5 - 0.25% air all pipes 87% 144%  
Model 6 - 0.5% air all pipes 93% 118% 0 
(*) at Site 5, actual field time below 20 psi was 0 seconds for each case. 
value in bold is best-fit. 

Presented in Figures 5.4 and 5.5 are graphs that illustrate how the best-fit 

data for the for 24 second and 52 second pump shutdown correlate with the field 

data.  Each figure shows the field and model pressure at sites 3, 5 and 6. 
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Figure 5.4 – Scenario #2: 52 second Shutdown Field vs. Model 6 

0

20

40

0 30 60 90

Pr
es

su

120

Time (seconds)

Field Site6 Field Site5 Field Site3 Model Site3 Model Site6 Model Site5

 
Figure 5.5 – Scenario #2: 24 second Shutdown Field vs. Model 6 
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75 

5.4 Light rike at Site 1 Results (Scenario #3) 
ing 

strike W  the early morning hours

near capac  MGD) at the time of the lighting stri e.  Four high service 

pump

and one 900 HP - 10 MGD pump).  The surge wave was collected by field 

equipment located at Site #1 and #5. 

 

modeled as a pump trip at time equal to 1 ond with a ball valve.  Three of the 

r p p t

 

Pump # 

ning St
e AWWAR

TP1 in

Th

 at 

s w

F study did not include th

 of July 4, 2001.  The plant was running 

is data set, which involved a light

ity (37

ere runnin

k

g (one 700 Hp - 8 MGD pump, two 800 Hp – 8 MGD pumps 

Be

um

cause the scenario involved a loss o

 sec

ith 

f power trip, the surge event was

fou s tripped and shutdown along w heir corresponding ball valve. 

Table 5.7 - Tabular Surge Results for Scenario #3 

Site #1 Site #5 
(Time of Pressure Range essure Range Pressure Pressure Pr
C e) Max Min r Max Min Drop losur D op 

Model Name (psi) si (psi) (psi) (p ) 
WTP1 h Lig tning Strike       
Field 157  1  29 14 43 29 0 
Model 1 - 300 es 147 6 141 24 -9 33 0fps all pip
Model 2 - 3800 fps all pipes 519 -14 5 25 -14 39 33 
Model 3 - ws varies 147 4 143 28 -6 34 
Model 4 - 0.1% air all pipes 492 -14 506 24 -14 38 
Model 5 - 0.25% air all pipes 436 -14 24 -14 38 450 
Model 6 - 0.5% s 442 -14 56 24 -14 38  air all pipe 4  

 

at 

the exact boundary conditions related to how the pumps shutoff is unknown.  Did 

the ball val  evenly, or did they remain en for a period of time?  

Some information was gathered from the 

night; however, certain assumptions had to b in order to create the model.  

The a um n e th va s clo  p m e Hi  

service pump 11, w  rem ed o ed until the operator cou lose  

discharge v

that Model 2, 4, 5 & 6 did not correlate well at

performed well.  Utilizing the best-fi ax-m tion

The lightning strike at WTP1 is somewhat difficult to model in the fact th

ves

ptio

 close stu

a

sed

ck op

WTP1 operator who was working that 

e m de 

ss s mad were at all lve er nor al exc pt for gh

hich ain pen

t “m

ld c  the

alve by hand.  With that being said, in table 5.7 it is interesting to note 

 all.  Models 1 and 3 however, 

in” equa  2 approach, the 
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computed best-fit value for model 1 and 3 in this scenario computed to only 73%.  

This is due to the percentage difference resulting from the large Site 5 minimum 

pressures result of 0 psi.  Using the pressure drop magnitude best-fit approach, 

models 1 and 3 compute to 101% and 103%.  To further illustrate how well the 

mode  

t-

l co

fit m

rrelated, p

odel. 

resented in Figure 5.6 is a graph of the field data versus the

bes
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Figure 5.6 – Scenario #3: Field Data vs. Model at Site 1 

 

re nd e se  m o s well 

with the field data both in terms of magnitude and general shape.  Figure 5.7 

differs slightly, but the key item is that is predicts low pressures events that could 

lead to potential distribution system intrusion.  Because scenario #3 involved a 

real-life event, with no one present to record how things happened (i.e., actual 

From Figu  5.6 a  5.7 it can b en that the odel c rrelate  very 

76 



www.manaraa.com

speed of ball valve closure, did all pumps trip, etc) the ability to model after the 

event and have a model correlate well would increase one’s confidence with the

model. 
 

30

10

20

Pr
es

su
re

 (p
si

)

-10

0

0 60 120 180 240 300 360

Time (sec)

Field Site5 Model Site5
 

Figure 5.7 – Scenario #3: Field Data vs. Model at Site 5 

 
The other important part from Figure 5.6 and 5.7 is the amount of time tha

pressure was below 20 psi.  In Figure 5.6 the amount of time that pressure was 

below 20 psi in the field was 11 seconds versus the models computed time of 14 

seconds.  In Figure 5.7 the amount of time that pressure was below 20 psi was 

greater than 60 seconds for both the field and model. 

t 
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5.5 Site #1 Drawdown Test Results (Scenario #4) 
This test, also referred to as the Calibration Data test in the AWWARF 

Study involved four shutdowns and three startups of three different high service 

pumps at WTP1 (Site #1).  The surge wave was collected by field equipment 

located at Sites #1, #2 and #3.  The unique part of this test was that one of the 

two 30-inch transmission mains leaving the plant was valved off so that all the 

flow was proceeding through one 30-inch main.  The one flaw in using this data 

as a calibration run is that SCADA data for the distribution system pressures and 

tank levels were not recorded for the date on which this drawdown test was 

conducted (3-15-01) due to a problem with the SCADA data logging software.  

As luck would have it the drawdown test conducted at WTP1 on 3-15-01 was 

also flawed and was repeated on 4-3-01.  All SCADA data is available for that 

day and RADCOM recorders were set at Site #1, #2 and #3 for this test.  This 

test will be used to compare model results versus actual results under the similar 

field conditions as the 3-15-01 date included in the AWWARF study.  The 

drawdown involved three shutdowns and three startups of three different high 

service pumps at WTP1 (Site #1), with one of the shutdowns involving two 

pumps within a one minute time period.  The surge wave was collected by field 

equipment located at Sites #1, #2 and #3.  The pump startup was not modeled 

since they did n

distribution system. 

resented in Tables 5.8 and 5.9 are the results of the modeling results for 

scenario #4.  As has been the case with all prior modeling results, the results 

with 3800 fps wave speed were poor.  In this case the results with 3000 fps wave 

speed and th The best 

model for the Pump 10 sh rainment.  The best-fit 

model for the pump 11 shutdown was using 0.1% air entrainment. 

ot contribute to any low or negative pressures within the 

P

e variable wave speed by material type were also poor.  

utdown was using 0.5% air ent
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Table 5.8 - Tabular Surge Results for Scenario #4 
 

    Field Measurements Model 3000ws Model 3800 ws Model variable ws 
Flow 

(Pre-condition) 
(MGD) 

Cause of 
Transient 

(Operating 
Condition) 

Field Model 

Si
te

# Pre-
Condition 
Pressure 

(psi) 

Maximum 
Change in 
Pressure 

(psi) 

Pre-
Condition 
Pressure 

(psi) 

Maximum 
Change in 
Pressure 

(psi) 

Pre-
Condition 
Pressure 

(psi) 

Maximum 
Change in 
Pressure 

(psi) 

Pre-
Condition 
Pressure 

(psi) 

Max
Change 
Pressur

(psi) 

imum 
in 
e 

8.8 9.3 1 124 70 125 161 125 630 125 196 
   2 53 57 59 109 59 314 59 148 

Shutdown of HS 
Pump 10 

    3 45 44 55 100 55 249 55 122 
15.8 16.3 1 161 140 160 708 160 548 160 236 

   2 76 86 84 270 84 262 84 269 Shutdown of HS 
Pump 11 & 14 

    3 61 69 75 260 75 224 75 140 
8.5 9.0 1 138 130 131 661 131 601 131 197 

   2 66 97 65 248 65 229 65 132 Shutdown of HS 
Pump 11 

    3 56 59 62 203 62 218 62 117 
   Field Measurements Model 0.1% air Model 0.25% air Model 0.50% air 

Flow 
(Pre-condition) 

(MGD) 

Cause of 
Transient 

(Operating 
Condition) 

Field Model 

Si
te

# Pre-
Condition 
Pressure 

(psi) 

Maximum 
Change in 
Pressure 

(psi) 

Pre-
Condition 
Pressure 

(psi) 

Maximum 
Change in 
Pressure 

(psi) 

Pre-
Condition 
Pressure 

(psi) 

Maximum 
Change in 
Pressure 

(psi) 

Pre-
Condition 
Pressure 

(psi) 

Maximu
Change 
Pressur

(psi) 

m 
in 
e 

8.8 9.3 1 124 70 125 143 125 98 125 74 
   2 53 57 59 101 59 82 59 62 

Shutdown of HS 
Pump 10 

    3 45 44 55 87 55 75 55 56 
15.8 16.3 1 161 140 160 139 160 3500 160 1415 

   2 76 86 84 106 84 98 84 451 Shutdown of HS 
Pump 11 & 14 

    3 61 69 75 84 75 85 75 451 
8.5 9.0 1 138 130 131 99 131 94 131 68 

   2 66 97 65 90 65 80 65 57 Shutdown of HS 
Pump 11 

    3 56 59 62 82 62 72 62 50 
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Table 5.9 - Difference between Model Results and Field Data for  

    Model 3000ws Model 3800 ws le w

Scenario #4

Model variab s 
Flow 

(Pre-condition)
(MGD) 

Cause of 
Transient 

(Operating 
Condition) 

Field Model

Si
te

# Pre-
Condition 
Pressure 

(psi) 

Maximum 
Change in 
Pressure 

(psi) 

Pre-
Condition 
Pressure 

(psi) 

Maximum 
Change in 
Pressure 

(psi) 

C
P

(ps

Pre-
ondition 
ressure 

i) 

Maxim
Chang
Pressu

(psi)

um 
e in 
re 
 

8.8 9.3 1 1 91 1 560 1 126 
   2 6 52 6 257 6 91 

Shutdown of HS 
Pump 10 

    3 10 56 10 205 10 78 
15.8 16.3 1 -1 568 -1 408 -1 96 

   2 8 184 8 176 8 183 Shutdown of HS 
Pump 11 & 14 

    3 14 191 14 155 14 71 
8.5 9.0 1 -7 531 -7 471 -7 67 

   2 -1 151 -1 132 -1 35 
Shutdown of HS 

Pump 11 

    3 6 144 6 159 6 58 
   Model 0.1% air Model 0.25% air Model 0.50% air 

Flow 
(Pre-condition)

(MGD) 

Cause of 
Transient 

(Operating 
Condition) 

Field Model

Si
te

# Pre-
Condition 
Pressure 

(psi) 

Maximum 
Change in 
Pressure 

(psi) 

Pre-
Condition 
Pressure 

(psi) 

Maximum 
Change in 
Pressure 

(psi) 

Pr
Cond
Pres

(ps

e-
ition 
sure 
i) 

Maxim
Chang
Pressu

(psi)

um 
e in 
re 
 

8.8 9.3 1 1 73 1 28 1 4 
   2 6 44 6 25 6 5 

Shutdown of HS 
Pump 10 

    3 10 43 10 31 10 12 
15.8 16.3 1 -1 -1 -1 3360 -1 1275 

   2 8 20 8 12 8 365 Shutdown of HS 
Pump 11 & 14 

    3 14 15 14 16 1  4 382
8.5 9.0 1 -7 -31 -7 -36  -7 -62

   2 -1 -7 -1 -17 -1   -40Shutdown of HS 
Pump 11 

    3 6 23 6 13 6 -9 
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The best-fit model for the pump 11 and 14 concurrent pump shutdown was the 

0.1% air entrainment model.  Note that this shutdown modeling involved using 

two pump trips at different times and two valve closings at different times.  Based 

upon the field data a pump trip of 17 seconds was used for pump 11 with valve 

closure starting at 1 second and completing at 26 seconds.  Pump 14 was 

tripped at 61 seconds with valve closure starting at 46 seconds and completing at 

86 seconds. 

Presented in Figure 5.8 is a graph of the field data for the surge event 

modeled in Scenario #4 at Site #1, shutdown of pumps 11 & 14 versus the 

modeling data for the best-fit model (0.1% air entrainment).  Note the good 

correlation between the low pressure magnitude created when pump 14 shuts 

down.  Also note how well the slopes of model correlate with the field data. 

Presented in Figure 5.9 is a graph of the field data for the surge event 

modeled in Scenario #4 at Site 2, shutdown of pumps 11 & 14 versus the 

modeling data for the best-fit model (0.1% air entrainment).  There are several 

things to note in this figure.  The first being that the elevation or starting 

pressures differ by  13 psi.  This appears problematic; however, the elevation of 

site used was never surveyed and was taken from USGS Quad sheet as 

elevation 1046.  The elevation in the model for this node is 1040. QUAD sheets 

use 10 foot contour interval and may be off as much as 20 feet.  Considering this, 

the starting pressure difference is reasonable.  The next difference is the amount 

of time difference between the peaks.  This is accounted for in the fact that there 

was no correlation between the clocks used on the field data loggers used at site 

1 and 2.  Because the units were unable to be set with the same zero start time 

there is some built in difference.  The model results, in terms of time are in proper 

relation because the zero start time is the same.  The important items to note are 

the magnitudes and slopes and in Figure 5.9 the model correlates very well with 

the field data.  The model predicted negative pressures that were also recorded 

by the data loggers. 
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Figure 5.8 – Scenario #4: Field Data vs. Model at Site 1 
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Figure 5.9 – Scenario #4: Field Data vs. Model at Site 2 

as 

Shutdown of Pumps 11 & 14 

 

The other important part from Figures 5.8 and 5.9 is the amount of time 

that pressure was below 20 psi.  In Figure 5.8 neither the model nor field data 

had pressures below 20 psi.  In Figure 5.9 the amount of time that pressure w

below 20 psi in the field was 31 seconds versus the models computed time of 22 

seconds. 
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5.6 Locations of Low or Negative Pressures 
As discussed in section 4.9, the use of the pressure contour tool within 

Surge2000 provides engineers with a powerful tool to locate places within a 

distribution system where low pressure below are likely to occur. 

Presented in Figure 5.10 is a figure of the entire surge model, (same bas

as in Figure 4.17) with the minimum pressures computed.  The area with gray 

cross hatched contours represents areas that experie

e 

nced minimum pressure 

below 20 psi. 
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Pressures less 
than 0 psi 

85 

Figure 5.10 – Locations of Minimum Pressures below 20 psi. 
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The areas in all white experienced pressures greater then 20 psi.  The white 

areas bordered by black lines experienced pressures below 0 psi.  These are the 

areas that would warrant further review to determine the risk potential for 

contamination.  High hazard areas would be where leaking mains are located 

near underground storage tanks or near sewer lines.   Areas located in these 

potentially higher risks areas should be fixed quickly and placed on a priority list 

for fixing. 

 

5.7 Effects of Low or Negative Pressures 
It has been documented that low pressures do exist within water 

distribution systems.  In order to help understand the effects of low pressures 

within a distribution system consider two examples presented herein.  Example 1 

is a leaking water main located within 18 inches of a leaking surcharged sewer.  

A surcharged sewer is defined as a sewer that is under pressure, but not 

overflowing out of a manhole, due to heavy flow, line blockage or line size that is 

under capacity.  Example 2 is a 2 story residential house with standard plumbing 

located within 50 feet of the location of a negative pressure event.   

For simplicity, lets assume the leaking water main is under 35 psi and 

produces a 1-gallon per minute leak.  Using the standard orifice equation one 

can determine the area of the leak to be approximately 0.08 inches (5/64) in 

diameter.  Typical water lines are 4 feet below grade and lets assume that the 

sewer is 5.5 feet below grade but due to its surcharge condition is under 1 psi of 

pressure.  Based on the results in scenario #3, site 5, zero psi was observed and 

occurred for approximately 50 seconds.  Under this scenario, the head available 

to push water into the main is 0.8 feet (1 psi – 18 inches).   The flow entering the 

system is 0.1 gallon per minute.  Since the leak occurred for almost one minute 

0.1 gallons of raw sewage could enter the water main.  Could this amount make 

some one sick?  That question is beyond the scope of this work, such factors as 

dilution, chlorine demand, etc. will determine what happens to that 0.1 gallons.  

However, it illustrates the point that water that is outside the main can potentially 

enter the main due to low pressures caused by a transient event .  If the main 
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was under a negative pressure of –14 psi then the amount would be 

approximately 0.6 gallons. 

e that 

 push 

 feet 

7.7 gpm.  Considering that 

75 fee

wo 

5.8 Me
e 

ick, 

s, surge relief valve, surge anticipator 

val s d 

to veri

once a

determ  surge model can 

suc s

effective tool to design improvements to reduce and or eliminate the low pressure 

occ r

For example 2 lets consider a residential connection that is 50 feet in 

length from the water main to the house, and lets assume that a toilet on the 

second floor contains a blue tinted toilet cleaning product.  Now lets assum

during the time when the toilet was filling, a negative pressure wave of 0 psi 

occurred for 50 seconds at the service connection.  The head available to

flow from the toilet tank towards the main (assumes main elevation is 15

lower than tanks) is 15 feet.  Assuming 75 feet of ¾ inch material the flow 

computed using a Hazen-Williams ‘C’ factor of 140 is 

t of ¾ line contains 1.75 gallons of water it is clear that flow from the toilet 

tank could reverse all the way into the distribution system. 

During the several models run it was shown that low and or negative 

pressures occurred in the distribution system from normal events and that 

pressures below 20 psi occurred for as long as 60 seconds.  Given the t

examples it is reasonable to assume that cross connections can occur within a 

water distribution systems that are subject to transients. 

 

thods to Reduce or Eliminate Low or Negative Pressure 
The purpose of the work is not to discuss how negative pressures can b

avoided within a water distribution system.  Friedman, et. al. (2004) and Gull

et. al. (2004) lists several methods such as slower valve closing speeds, air / 

vacuum valves, pressure surge vessel

ve , etc.  This work was conducted to show how the surge model can be use

fy and predict where low and or negative pressures occur. Furthermore, 

 surge model is calibrated, solutions can be designed and modeled to 

ine the adequacy of the proposed solution.  If a

ce sfully predict low pressures, then the surge model becomes an extremely 

ur ences. 
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5.9 is

discus .  Often considered the “Bible” for water distribution 

sys m te 

Standa

Board blic Health and Environmental Managers states 

the ll

e 

onwealth of Kentucky, the Environmental Protection Cabinet, 

 

ever 401 

er all 

ts in 

vent, 

 fall below thirty (30) psig nor shall the static pressure exceed 150 

psig.” 

d below 

 D cussion of Current Regulation Regarding Pressure 
There are several guidelines and regulations that come into play when 

sing low pressures

te s, Recommended Standards for Water Works, 2003 Ed. (a.k.a. Ten Sta

rds), a publication printed by the Great Lakes – Upper Mississippi River 

of State and Provincial Pu

 fo owing concerning pressures (Chapter 8.2.1): 

 “All water mains, including those not designed to provide fire protection, 
shall be sized after a hydraulic analysis based on flow demands and 
pressure requirements.  The system shall be designed to maintain a 
minimum pressure of 20 psi (140 kPa) at ground level at all points in th
distribution system under all conditions of flow.  The normal working 
pressure in the distribution system should be approximately 60 to 80 psi 
(410 – 550 kPa) and not less than 35 psi (240 kPa).” 
 
In the Comm

Division of Water (KYDOW), governs water distribution systems.  KYDOW 

publishes and enforces the rules and regulations of the Commonwealth.  There is

no law that directly mandates minimum pressures in Kentucky; how

KAR 8:100 Section 4 (1) references and incorporates the above Ten State 

Standards publication.  Thus 20 psi is the minimum allowable pressure und

flow conditions in Kentucky. 

In addition to the KYDOW, the Kentucky Public Service Commission 

(KYPSC) has jurisdiction and laws that apply to certain types of private water 

utilities and water districts within the Commonwealth.  Municipal governmen

Kentucky are not governed by these laws.  807 KAR 5:066, states “…In no e

however, shall the pressure at the customer’s service pipe under normal 

conditions

What is interesting to note is that Ten State Standards (TSS) mentions 

that 20 psi must be maintained under all flow conditions.  Does this include 

transient events?  If it does, then the state of Kentucky, by referencing TSS 

would consider it a violation of its regulation every time pressure droppe

20 psi within a water distribution system. 
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Looking at the KYPSC regulation it clearly states that 30 psi must be me

under normal conditions.  Because transients occur infrequently, under thi

there would not be a violation du

t 

s rule 

ring a transient event. 

l in 

ter 

n lives 

le 

 

5.10 Applica
One of the challenges of creating any  mod initial s 

should be used reated models alu be  

fie  this work, recommended values for celerity 

or wave speed should be either 3000 fps or based on pipe type and material with 

0. value est- in a m f 

the scenarios and is the best place to start from, while models with 0.1% air also 

correlated well.  Models with 0.1% air had i l, wa s be

18 ng 3000 fps is that the input of data will 

air  will have the same value.  The one draw back to 

using this constant value is that it represents a system with a vast majority of 

pipe being rigid (concrete, AC, DI or CI).  If the system is comprised of a large 

quantity of PVC or HDPE mains than 3000 fps will be to conservative. 

As a final recommendation, for systems with unknown pipe material, 3000 

fps is the best starting place for wave speed values.  For models in which the 

materials are known, the use of a wave speed based on material type should be 

utilized as the starting point and then factored to account for air entrainment.  

How does this all relate to this work?  Perhaps this is ultimately a 

questions for attorneys, however, it seems reasonable that there is potentia

the future, considering the nature of litigation in the United States, to sue a wa

utility should someone become sick and it is shown that the affected perso

in an area susceptible to pressure below 20 psi or susceptible to transient 

induced negative pressures.  The surge model is a tool that can perform a coup

of task in this regard.  One, it can determine which areas are likely to see 

pressures below 20 psi as a result of a pump trip or rapid valve closure and two,

it can be used to design systems to eliminate the effects of rapid valve closure or 

pump trip. 

 

tion of Results for New Studies 
 surge el is what value

for newly c and what v es should used when

ld data is not available.  Based on

1% air entrainment.  The 3000 fps was the b fit model ajority o

n genera ve speed tween 

00 – 2100 fps.  The advantage of usi

be f ly easy in that all pipes
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This latt gid 

pipe and should yield better results. 

er approach will account for system that have both rigid and less ri
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CHAPTER 6 
CONCLUSIONS 

In Section 3.2, the results of the AWWARF project 2686 for system #2 

were presented.  This study was undertaken to determine if the conclusions that 

were written regarding system #2 in the AWWARF / EPA publication titled 

Verification and Control of Pressure Transients and Intrusion in Distribution 

System, page xxiv, were in fact true.  This study was also undertaken to 

determine if large, complex water distribution system could be modeled 

effectively for transient events given the complexities arising out of demands, 

boundary conditions and appropriate celerity values. 

The Environmental Protection Agency (EPA) has generally defined a large 

water system to be a system that supplies water to a population base greater 

than 100,000 people.  This definition has been used a number of times when 

new regulation are to be promulgated and was used as the basis for defining 

water system under the requirements of the Public Health Security and 

Bioterrorism Preparedness and Response Act (PL. 107-188) of 2002.  System #2 

serves a population of approximately 350,000 people and thus is defined as a 

large water distribution system. 

Based on the four different scenarios investigated and the multiple model 

runs per scenario, a total of sixty-six models were run and analyzed as part of 

this study.  This study showed that the Surge2000 surge model was able to 

obtain better correlation than the modeling done as part of the AWWARF study.  

The reasons for this are listed below: 

• EPS runs were conducted on the base models prior to performing surge 

models.  This step insured that demand factors, pump and pipe status and 

tank levels were correct.  It also was used to verify that the model held up 

or remained stable under all actual conditions. 

• Demand factors were computed for every hour in order to get an accurate 

demand included with the model. 

• Pump and tank changes were included with the modeling in order to get 

the steady state pressures to correlate between the model and field data. 
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• Several large users have th atly affect system pressures.  

The demands of the la d to verify their effect during 

ccurately.  Because all the pumps tested 

 

 

 

l tended to correlate well with the field data in terms 

of mag  

 that 

n 

ion 

ut funny tasting water, with an effective transient model, an 

analys

 if the 

 cross 

connection would exist.  Even with a slightly conservative transient model, 

e ability to gre

rge users were evaluate

the surge events. 

• Different values of celerity were used to determine which set of values 

correlated the best.  The AWWARF study did not mention how it handled 

different celerity values. 

• The pump trip was modeled a

featured ball check valves, the shutdown of the pump had to be modeled

as two events.  One ball valve closing event and one pump trip during the

ball valve closing event.  The AWWARF study did not mention how it 

modeled the pump shutdown; however, if it simply based the shutdown on

the ball valve closing time their model would not be reflecting true 

conditions. 

Further, the Surge2000 mode

nitude, length of time for low or negative pressures and predicted slightly

more conservative values then the actual field results.  This slight 

conservativeness lends itself well to how transient models will be used by 

practicing engineers.  If the engineering profession designs a solution to a 

problem using an effective transient model, there stands an excellent chance

the solution will truly work.  An example of this is discussed below.  Suppose a

area of a water distribution system is located on high ground near a gas stat

that has two leaking diesel fuel tanks.  Even though no one may have ever 

complained abo

is could be run to determine if negative pressure are ever likely to occur in 

the area. 

From the results of this study and as mentioned previously, the model 

tended to be more conservative.  Thus in the case of the leaking fuel tanks, if the 

model predicted pressures of 20 psi, it is likely that the actual field data would be 

higher and there would be very little risk of a cross connection.  Likewise

model predicted –14 psi, there stands an excellent chance that a
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proposed solutions or modifications that re made to reduce the low pressure 

event, there is an excellent chance that the solution would be effective in 

removing the cross connection. 

The unique part of this project had to do with the size of the transient 

model and the ability to correlate transient events with real field data.  This 

worked showed that large transie ling large water distribution 

system, can effectively determine the area or location, length of time and 

magnitude of transient events.  Based on the author’s knowledge and research, 

no other published work exists, other than the referenced AWWARF study and 

citied papers, which documents this type transient modeling effort and the results 

that were obtained.  Presented in Table 6.1 and 6.2 is a summary of the results 

of this study at Site 5 which is the highest ground elevation point in the system 2 

distribution system. 

 

Table 6.1 – Comparison of Max – Min Results at Site 5 

Scenario# 
Field 
Data 

Max – Min 
(psi) 

AWWARF 
Study 

Max – Min 
(psi) 

This 
Study (*) 

Max – Min 
(psi) 

a

nt models, mode

Scenario 1 – Pump 14 Shutdown 40 - 33 30 – 23 41 - 25 
Scenario 1 – Pump 10 Shutdown 39 - 32 29 – 24 41 - 27 
Scenario 1 – Pump 11 Shutdown 40 - 32 29 – 16 43 - 33 
Scenario 2 – 22 sec close 45 - 33 35 – 19 47 - 26 
Scenario 2 – 24 sec close 45 - 34 35 – 20 48 - 26 
Scenario 2 – 30 sec close 47 - 35 36 – 21 49 - 26 
Scenario 2 – 52 sec close 48 - 37 36 – 23 49 - 26 
Scenario 3 – WTP1 Lightning Strike 29 - 0 n/a 28 - (-6) 

(*) Using best-fit model. 
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Table 6.2 – Comparison e below 20 psi at Site 5 
ARF This 

 
i 

of Length of Tim

Scenario# 
Data 

Time less 
than 20 psi 

(sec) 

Study 
Time less 

than 20 psi 
(sec) 

Study (*) 
Time less

than 20 ps
(sec) 

Field AWW

Scenario 1 – Pump 14 Shutdown 0 n/a 0 
Scenario 1 – Pump 10 Shutdown 0 n/a 0 
Scenario 1 – Pump 11 Shutdown 0 n/a 0 
Scenario 2 – 22 sec close 0 n/a 0 
Scenario 2 – 24 sec close 0 n/a 0 
Scenario 2 – 30 sec close 0 n/a 0 
Scenario 2 – 52 sec close 0 n/a 0 
Scenario 3 – WTP1 Lightning Strike 11 n/a 14 

(*) sing best-fit model. 

Site 5 is located near industrial and commercial developments and generally is 

the most pressure sensitive portion of the system 2 distribution system.  While 

other sites such as Sites 2 and 3 had low and or negative pressures during pump 

shutdowns or trips the other areas were not located in highly developed areas 

subject to sewers, gas stations and numerous service connections. 

In all the model runs and created as part of the work, it became apparent 

that the value of celerity is the most important factor in determining the 

magnitude and duration of a low and or negative transient event.  In some 

models, the best or optimum results were somewhere between a fixed value of 

3000 fps for all pipes and a celerity value based on pipe material, size and 

percentage of entrained air.  Because of the difficulty in knowing which pipes 

would have entrained air and which pipes would not, the models run as part of 

this study were all considered to have the same amount of entrained air.  In real 

life, one would not expect that to be the case, but in the final analysis, the large 

models were able to correlate well with the field data using this approach. 

Based on this work, it is recommended that wave speed values of 3000 

fps be used for newly created surge models in which field data to calibrate is not 

available.  This value indicates that the system is comprised of mostly rigid pipe 

with air entrainment.  If it is known that a system is comprised of mostly PVC and 

HDPE pipe than the 3000 fps value is to high.  If material type data is available 

U
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for all pipes within the model, it is ended that a second model be 

created using wa ntrainment.  

 

istribution system. 

Skeletonization of models is known to effect the correlation between field 

data and model result ipe model that 

represented appr tem correlated well.  

is expected that smaller models with less percentage of mains modeled would 

yield different results although this assumption was not tested within this work. 

 further recomm

ve speeds based on material type and 0.1% air e

This will result in a model with wave speeds between 1800 and 2100 fps and

should work regardless of pipe material makeup of the d

s.  This work, which included a 2,500 p

oximately 40% of the entire distribution sys

it 

95 



www.manaraa.com

CHAPTER 7

Future research can be construed to n a couple of different items.  In 

t c

understand items discovered or un-quantified during a research project, while in 

another context it can mean how the current project could be continued to 

provide further insight in the future. 

ork ca enefit from three areas going forward.  The first area of 

tion of work as it relates to air entrainment within a 

water distribution system.  The models used in this study were indeed sensitive 

to ent.  If field logge ere not available there would 

be no true way of knowing what the appropriate celerity values should be.  Efforts 

ere made to look a the effect of air entrainment by running multiple model runs 

ith differen celerity values

The work can also benefit from furt

ter changes to the distribution system are lled.  One example of this is that 

ing of 06 a new floating 2 million gallon elevated storage tank will 

be constructed very near Site #5.  This new tank affords the opportunity to truly 

study a system as it grows and allows for before and after comparisons.  As 

discussed in the review of the work conducted in Austin, Texas, it is assumed 

that online floating storage tanks can reduce low pressure transients.  This 

mp this new 2 MG 

storage tanks. 

al area f future study would be the effect of skeletonization on this 

su   Curr  there exis #2.  A 12,500 pipe 

odel, a 5,500 pipe odel and the 2,500 pipe odel used as part of th  work.  

Re-running these scenarios on these larger models, as well as running these on 

smaller models (as low as 10%) would be valuable information to engineers and 

modelers in that it would help to determine what size model is the most 

appropriate in terms of model accuracy versus cost to develop. 

 

 
FUTURE RESEARCH 

 mea

one context i an b interpreted to mean areas of future research needed to help e 

This w n b

study would be the ntinuaco

 the amount of air entrainm rs w

w t 

w t . 

her study and modeling in the future 

af  insta

by the beginn 20

assumption could be tested upon the co letion of floating 

The fin  o

rge model. ently t three models for System 

m  m m is
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APPENDIX A 
BASE E MODEL INPUT FILE

Th ppendix was to origina  base surge model 

relating to the protection del 

 not ncluded.  Re earchers may reque

k and s ase from the Author and the American 

Water Works Company.  The author can be reached at rcsvin@aol.com

 SURG  
is A lly include a hard copy of the

used to create the surge models in this work; however, due to security issues 

 of public drinking water systems the base surge mo

is  i s st a copy of the base surge model upon 

a background chec ecurity rele

 or 

rcsvin@amwater.com. 
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APPENDIX B 
BOUNDARY CONDITIONS & PUMP INERTIA 

This Appendix includes a sample of the boundary condition data and pump 

inertia calculations that were used in the surge models. 

 

Water Treatm mp Logs 

Site #9 and Site #1 Pump Log for Oct. 18, 2002 

ent Plant Pu

      
  Shift 

Pump 12am - 8 4pm - 12amam 8am - 4pm 
Site 9 - WTP2       

WTP2 - #6       
WTP2 - #7 On On On 
WTP2 - #8       
WTP2 - #9       

WTP2 - #10       
WTP2 - #11       

Site 1 - WTP1       
WTP1 - #10   On 8:55 Off 4:45 
WTP1 - #11 On On On 
WTP1 - #12       
WTP1 - #13       
WTP1 - #14 On On On 
WTP1 - #15 On On On 

        
      

Site #9 and Site #1 Pump Log for Oct. 15, 2002 
      
  Shift 

Pump 12am - 8am 8am - 4pm 4pm - 12am
Site 9 - WTP2       

WTP2 - #6       
WTP2 - #7 On On On 
WTP2 - #8       
WTP2 - #9       

WTP2 - #10       
WTP2 - #11       

Site 1 - WTP1       
WTP1 - #10   On 1:46, Off 1:59   
WTP1 - #11   On 2:06, Off 2:26   
WTP1 - #12       
WTP1 - #13 On   On 
WTP1 - #14 On Off 1:43, On 2:46 On 
WTP1 - #15 On   On 
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Site #9 and Site #1 Pump Log for July 4, 2001 

 

      
  Shift 

Pump 12am - 8am 8am - 4pm 4pm - 12am
Site 9 - WTP2     On 8:00 

WTP2 - #6       
WTP2 - #7 On On Off 8:00 
WTP2 - #8       
WTP2 - #9       

WTP2 - #10       
WTP2 - #11       

Site 1 - WTP1       
WTP1 - #10 Off 1:38, On 2:50 On Off 4:45 
WTP1 - #11 On On On 
WTP1 - #12 Off 1:38     
WTP1 - #13 Off 1:38, On 3:05 On On 
WTP1 - #14 On 2:55 On On 
WTP1 - #15       

        
    

Site #9 and Site #1 Pump Log for April 3, 2001 
      
  Shift 

Pump 12am - 8am 8am - 4pm 4pm - 12am
Site 9 - WTP2       

WTP2 - #6 On 1:00 On On 
WTP2 - #7 On On On 
WTP2 - #8       
WTP2 - #9       

WTP2 - #10       
WTP2 - #11       

Site 1 - WTP1       
WTP1 - #10 On Off 8:30 On 11:00 
WTP1 - #11 On Off 8:25, On 9-9:55, 11:05-12:05, On 1:40   
WTP1 - #12       
WTP1 - #13       
WTP1 - #14 On Off 8:20, On 9-9:55, On 12:55   
WTP1 - #15       
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Booster Station Pump Log 

Booster Pump Log fo ber 18, 2002 r Octo
      
  Shift 
Site # 12am - 8am 8am - 4pm 4pm - 12am 

14     On 4:55, Off 7:50 
14a     On 8:20, Off 9:15 

15   9:30 - 10:00, 10:30 - 11:00 On 7:10, Off 8:20 
4     On 7:50, Off 9:15 

16     On 9:15, Off 11:00 
6a On 7:00 - 8:20 Ball Valve Testing   
6b   Ball Valve Testing   
6c   Ball Valve Testing   

17a       
17b       
19a       
19b       
19c       
20a       
20b       
21a       
21b       
13a On 6:30 Off 9:50   
13b       

22 in auto control for (On 29’ – 35’) 
18 In auto Control (off all day) 

      
Booster Pump Log for October 15, 2002 

      
  Shift 
Site # 12am - 8am 8am - 4pm 4pm - 12am 

14   On 2:30 Off 5:00 
14a On 6:15 Off 9:30   

15     On 5:00 - 7:20 
4     On 6:20 - 10:20 

16     On 7:30 - 11:00 
6a   On 11:20 to 1:20   
6b       
6c       

17a   On 12:30 On 
17b       
19a       
19b       
19c       
20a       
20b       
21a       
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21b       
13a On 6:20 Off 11:00   
13b   On 1:20 Off 5:00 

22 in auto Control for (on 28' off 35') 
18 In auto Control (on 7:00 AM to 5:00 PM) 

    
Booster Pump Log for July 4, 2001 

      
  Shift 
Site # 12am - 8am 8am - 4pm 4pm - 12am 

14 On 1:40-2:50   On 9:15-11:38 
14a     On 4:30-9:15 

15     On 9:15-9:45, On 10:45-11:40 
4       

16   On 9:50-2:10   
6a On 1:40-2:55 On 10:15-1:05   
6b On 1:45-2:40     
6c       

17a       
17b       
19a       
19b       
19c       
20a       
20b       
21a       
21b       
13a     On 4:30-9:15 
13b       

22 in auto Control 
18 In auto Control 

    
Booster Pump Log for April 3, 2001 

      
  Shift 
Site # 12am - 8am 8am - 4pm 4pm - 12am 

14       
14a   On 9:15-3:10 On 8:30-9:40 

15   On 9:55 Off 4:00, On 6:20-8:30, On 10:30-11:00 
4       

16       
6a   On 8:20-12:55   
6b       
6c   On 8:30-9, On 9:55-12:55 On 9:40-11:00 

17a       
17b       
19a       
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19b       
19c       
20a       
20b       
21a       
21b       
13a On 7:10-7:40 On 8:10-9:00, On 9:55-1:40   
13b     On 5:15-11:00 

22 in auto Control 
18 In auto Control 

 

Base Model Changes for 10-18-02 
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Base Mo r 7-4-01 del Changes fo
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Base M -3-01 odel Changes for 4

 

Base Demand Factor Changes 
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Initial Tank Levels 

 

Pump Inertia Computations for 6a 

 

Pump Inertia Computations for WTP1-10 & 11 
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Pump Inertia Computations for WTP1-14 
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APPENDIX C 
CELERITY COMPUTATIONS 

This Appendix includes calculation and spreadsheets created to compute and 

assign celerity (wave speed) values to each of the pipes in the surge models.  

Presented below are spreadsheets indicating how the different values of celerity 

were computed based on pipe size and material type.  The values are based on 

no air entrainment. 

Ductile Iron Computation 

 
 

Cast Iron Computation 
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PVC Computation 

 
 

HDPE Computation 

 
 

AC Computation 
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Lock Joint (LJ) Computation 

 
 

Weighted Wave Speed Calculation 
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Effect of Air Entrainment 
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APPENDIX D 

ABBREVIATIONS 
The following is a list of abbreviations used throughout this work. 

 

Abbreviation Used for: 

MGD million gallons per day 

cfs cubic feet per second 

gpm gallons per minute 

fps feet per second 

psi pounds per square inch 

VFD variable frequency drive 

SCADA supervisory control and data acquisition 

Hp or HP horsepower 
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